some formulas that are not directly given that may or may not help

https://arbital.com/p/cramsatformulas

by 974 Oct 6 2018 updated Oct 6 2018

i oofed on the other one


Slope Formula:
$~$\frac {(y_2-y_1)}{(x_2-x_1)}$~$= $~$\frac{\Delta y}{\Delta x}=\frac {rise}{run}$~$

Equation of a Line:
$~$y=mx+b$~$

Midpoint Formula:
($~$\frac {(x_1+x_2)}{2}$~$, $~$\frac {(y_1+y_2)}{2}$~$)

Distance Formula:
$~$\sqrt {(x_2-x_1)^2+(y_2-y_1)^2}$~$

Length of an Arc:
$~$L_{arc}=(2πr)(\frac {xº}{360})$~$

Area of an Arc Sector:
$~$L_{arc sector}=(πr^2)(\frac {xº}{360})$~$

Quadratic Formula:
$~$x=\frac {-b \pm \sqrt {b^2-4ac}}{2a}$~$

Completing the Square:
$~$ax^2+bx=0 \rightarrow a(x+d)^2+e=0$~$
$~$d=\frac{b}{2a}$~$
$~$e=c-\frac{b^2}{4a}$~$

Trigonometry:
$~$sin(x)=\frac {o}{h}$~$
$~$cos(x)=\frac {a}{h}$~$
$~$tan(x)=\frac{o}{a}$~$

Arithmetic Sequences:
$~$t_1, t_1+d, t_1+2d, …$~$

Geometric Sequences:
$~$t_1, t_1\cdot r, t_1\cdot r^2,…$~$

Exponent Rules:
$~$x^a\cdot{x^b}=x^{a+b}$~$
$~$(x^a)^b=x^{a\cdot{b}}$~$
$~$x^0=1$~$
$~$\frac {x^a}{x^b}=x^{a-b}$~$
$~$(xy)^a=x^a\cdot{y^a}$~$
$~$\sqrt{xy}=\sqrt{x} \cdot {\sqrt{y}}$~$
$~$x^{-b}=\frac {1}{x^b}$~$

Foil:
$~$(x+a)(x+b)=x^2+(b+a)x+ab$~$

Difference of Squares:
$~$a^2-b^2=(a+b)(a-b)$~$

Factoring:
$~$a^2+2ab+b^2=(a+b)(a+b)$~$
$~$a^2-2ab+b^2=(a-b)(a-b)$~$

Pythagorean Theorem:
$~$a^2+b^2=c^2$~$