[summary:
- [ Inversion of exponentials]: blogb(n)=logb(bn)=n.
- [ Log of 1 is 0]: logb(1)=0
- [ Log of the base is 1]: logb(b)=1
- [ Multiplication is addition in logspace]: logb(x⋅y)=logb(x)+logb(y).
- [ Exponentiation is multiplication in logspace]: logb(xn)=nlogb(x).
- [ Symmetry across log exponents]: xlogb(y)=ylogb(x).
- [ Change of base]: logb(n)=loga(n)loga(b)]
Recall that [3nd logb(n)] is defined to be the (possibly fractional) number of times that you have to multiply 1 by b to get n. Logarithm functions satisfy the following properties, for any base b:
- [ Inversion of exponentials]: blogb(n)=logb(bn)=n.
- [ Log of 1 is 0]: logb(1)=0
- [ Log of the base is 1]: logb(b)=1
- [ Multiplication is addition in logspace]: logb(x⋅y)=logb(x)+logb(y).
- [ Exponentiation is multiplication in logspace]: logb(xn)=nlogb(x).
- [ Symmetry across log exponents]: xlogb(y)=ylogb(x).
- [ Change of base]: loga(n)=logb(n)logb(a)