{
localUrl: '../page/566.html',
arbitalUrl: 'https://arbital.com/p/566',
rawJsonUrl: '../raw/566.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: '566',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'The n-th root of m is either an integer or irrational',
clickbait: 'In other words, no power of a rational number that is not an integer is ever an integer.',
textLength: '882',
alias: '566',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'JoeZeng',
editCreatedAt: '2016-07-06 23:33:03',
pageCreatorId: 'JoeZeng',
pageCreatedAt: '2016-07-06 23:33:03',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '1',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '35',
text: 'There is an intuitive way to see that for any natural numbers $m$ and $n$, $\\sqrt[n]m$ will always either be an integer or an irrational number.\n\nSuppose that there was some $\\sqrt[n]m$ that was a rational number $\\frac{a}{b}$ that was not an integer. Suppose further that $\\frac ab$ is written as a [-reduced] fraction, such that the [-greatest_common_divisor] of $a$ and $b$ is $1$. Then, since $\\frac{a}{b}$ is not an integer, $b > 1$.\n\nSince $\\frac ab = \\sqrt[n]m$, we have conversely that $(\\frac ab)^n = m$, which is a natural number by our hypothesis. But let's take a closer look at $(\\frac ab)^n$. It evaluates to $\\frac{a^n}{b^n}$, which is still a reduced fraction. [todo: Proof of gcd(a^n, b^n) = 1.]\n\nBut since $b > 1$ before, we have that $b^n > 1$ as well, meaning that $(\\frac ab)^n$ cannot be an integer, contradicting the fact that it equals $m$, a natural number.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '3',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JoeZeng',
'SharmaKunapalli'
],
childIds: [],
parentIds: [
'math'
],
commentIds: [],
questionIds: [],
tagIds: [
'proof_meta_tag',
'needs_parent_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '23108',
pageId: '566',
userId: 'SharmaKunapalli',
edit: '3',
type: 'newEditProposal',
createdAt: '2018-11-03 18:37:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16095',
pageId: '566',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-07 23:33:50',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16094',
pageId: '566',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-07 23:33:41',
auxPageId: 'proof_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16092',
pageId: '566',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-07 23:33:30',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15862',
pageId: '566',
userId: 'JoeZeng',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-06 23:33:03',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}