{
  localUrl: '../page/56p.html',
  arbitalUrl: 'https://arbital.com/p/56p',
  rawJsonUrl: '../raw/56p.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: '56p',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Math 2 example statements',
  clickbait: 'If you can read these formulas, you're in Math 2!',
  textLength: '1049',
  alias: '56p',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JoeZeng',
  editCreatedAt: '2016-07-07 17:19:21',
  pageCreatorId: 'JoeZeng',
  pageCreatedAt: '2016-07-07 16:47:41',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '143',
  text: 'If you're at a Math 2 level, you'll probably be familiar with most or all of these sentences and formulas, or you would be able to understand what they meant on a surface level if you were to look them up.\n\n> The [-quadratic_formula] states that the roots of every quadratic expression $ax^2 + bx + c$ are equal to $\\displaystyle \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$. The expression under the [-square_root], $b^2 - 4ac$, is called the [-discriminant], and determines how many roots there are in the equation.\n\n> The imaginary number $i$ is defined as the primary root of the quadratic equation $x^2 + 1 = 0$.\n\n> To solve the system of linear equations $\\begin{matrix}ax + by = c \\\\ dx + ey = f\\end{matrix}$ for $x$ and $y$, the value of $x$ can be computed as $\\displaystyle \\frac{bf - ce}{bd - ae}$.\n\n> The [-power_rule] in calculus states that $\\frac{d}{dx} x^n = nx^{n-1}$.\n\n> All the solutions to the equation $m^n = n^m$ where $m < n$ are of the form $m = (1 + \\frac 1x)^x$ and $n = (1 + \\frac 1x)^{x+1}$, where $x$ is any positive real number.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'JoeZeng',
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'math2'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: 'math2',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16005',
      pageId: '56p',
      userId: 'JoeZeng',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-07 17:19:21',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15999',
      pageId: '56p',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-07 16:48:48',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15998',
      pageId: '56p',
      userId: 'JoeZeng',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-07 16:47:42',
      auxPageId: 'math2',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15996',
      pageId: '56p',
      userId: 'JoeZeng',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-07 16:47:41',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}