{
localUrl: '../page/5g9.html',
arbitalUrl: 'https://arbital.com/p/5g9',
rawJsonUrl: '../raw/5g9.json',
likeableId: '3138',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'KevinClancy'
],
pageId: '5g9',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'comment',
title: '"I really like this domino analogy.\n\nAlso, I'd e..."',
clickbait: '',
textLength: '440',
alias: '5g9',
externalUrl: '',
sortChildrenBy: 'recentFirst',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricRogstad',
editCreatedAt: '2016-07-17 21:04:23',
pageCreatorId: 'EricRogstad',
pageCreatedAt: '2016-07-17 21:04:23',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'true',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: 'The principle of mathematical induction is a proof technique in which a statement, $P(n)$, is proven about a set of natural numbers $n$\\. It may be best understood as treating the statements like dominoes: a statement $P(n)$ is true if the $n$\\-th domino is knocked down\\. We must knock down a first domino, or prove that a base case $P(m)$ is true\\. Next we must make sure the dominoes are close enough together to fall, or that the inductive step holds; in other words, we prove that if $k \\geq m$ and $P(k)$ is true, $P(k+1)$ is true\\. Then since $P(m)$ is true, $P(m+1)$ is true; and since $P(m+1)$ is true, $P(m+2)$ is true, and so on\\.',
anchorText: 'It may be best understood as treating the statements like dominoes',
anchorOffset: '138',
mergedInto: '',
isDeleted: 'false',
viewCount: '291',
text: 'I really like this domino analogy.\n\nAlso, I'd expect to see the word "all" somewhere in this first paragraph -- I think it's worth emphasizing the point that if we have the base case and the inductive step then the statement will be true for *all* of the numbers after the base case, just like all of the dominoes after the first one would fall down. I think the current final sentence of the intro paragraph doesn't make this clear enough.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'EricRogstad'
],
childIds: [],
parentIds: [
'mathematical_induction'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17057',
pageId: '5g9',
userId: 'EricRogstad',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-17 21:04:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}