{
  localUrl: '../page/5gd.html',
  arbitalUrl: 'https://arbital.com/p/5gd',
  rawJsonUrl: '../raw/5gd.json',
  likeableId: '3139',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'KevinClancy'
  ],
  pageId: '5gd',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'comment',
  title: '"I think it would be worthwhile to explicitly ca..."',
  clickbait: '',
  textLength: '145',
  alias: '5gd',
  externalUrl: '',
  sortChildrenBy: 'recentFirst',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricRogstad',
  editCreatedAt: '2016-07-18 01:29:05',
  pageCreatorId: 'EricRogstad',
  pageCreatedAt: '2016-07-18 01:29:05',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'true',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: 'We'll do an example to build our intuition before giving the proper definition of the principle\\. We'll provide yet another proof that\n$$ 1 + 2 + \\cdots + n = \\frac{n(n+1)}{2}$$\nfor all integers $n \\ge 1$\\. First, let's check the base case, where $n=1$:\n$$ 1 = \\frac{1(1+1)}{2} = \\frac{2}{2} = 1.$$\nThis is \\(fairly obviously\\) true, so we can move forward with the inductive step\\. The inductive step includes an assumption, namely that the statement is true for some integer $k$ that is larger than the base integer\\. For our example, if $k\\ge1$, we assume that\n$$1 + 2 + \\cdots + k = \\frac{k(k+1)}{2}$$\nand try to prove that\n$$ 1 + 2 + \\cdots + k + (k+1) = \\frac{(k+1)([k+1]+1)}{2}.$$\nTake our assumption and add $k+1$ to both sides:\n$$1+2+\\cdots + k + (k+1) = \\frac{k(k+1)}{2} + k + 1.$$\nNow the left\\-hand sides of what we know and what we want are the same\\. Hopefully the right\\-hand side will shake out to be the same\\. Get common denominators so that the right\\-hand side of the above equation is\n$$\\frac{k(k+1)}{2} + \\frac{2(k+1)}{2} = \\frac{(k+2)(k+1)}{2} = \\frac{(k+1)([k+1]+1)}{2}.$$\nTherefore,\n$$ 1 + 2 + \\cdots + k + (k+1) = \\frac{(k+1)([k+1]+1)}{2}$$\nas desired\\.',
  anchorText: 'and try to prove that',
  anchorOffset: '606',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '287',
  text: 'I think it would be worthwhile to explicitly call out that what's happening here is that we're replacing $n$ in the original equation with $k+1$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'EricRogstad'
  ],
  childIds: [],
  parentIds: [
    'mathematical_induction'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17068',
      pageId: '5gd',
      userId: 'EricRogstad',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-18 01:29:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}