{
localUrl: '../page/5hs.html',
arbitalUrl: 'https://arbital.com/p/5hs',
rawJsonUrl: '../raw/5hs.json',
likeableId: '3149',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'PatrickLaVictoir'
],
pageId: '5hs',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Gödel II and Löb's theorem',
clickbait: '',
textLength: '1545',
alias: '5hs',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'JaimeSevillaMolina',
editCreatedAt: '2016-07-25 08:03:35',
pageCreatorId: 'JaimeSevillaMolina',
pageCreatedAt: '2016-07-21 16:40:23',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '3',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '94',
text: '[summary: [ Gödel's second incompleteness theorem] and [ Löb's theorem] are equivalent to each other. ]\n\nThe abstract form of [ Gödel's second incompleteness theorem] states that if $P$ is a provability predicate in a [5km consistent], [-axiomatizable] theory $T$ then $T\\not\\vdash \\neg P(\\ulcorner S\\urcorner)$ for a disprovable $S$.\n\nOn the other hand, [55w Löb's theorem] says that in the same conditions and for every sentence $X$, if $T\\vdash P(\\ulcorner X\\urcorner)\\rightarrow X$, then $T\\vdash X$.\n\nIt is easy to see how GII follows from Löb's. Just take $X$ to be $\\bot$, and since $T\\vdash \\neg \\bot$ (by definition of $\\bot$), Löb's theorem tells that if $T\\vdash \\neg P(\\ulcorner \\bot\\urcorner)$ then $T\\vdash \\bot$. Since we assumed $T$ to be consistent, then the consequent is false, so we conclude that $T\\neg\\vdash \\neg P(\\ulcorner \\bot\\urcorner)$.\n\nThe rest of this article exposes how to deduce Löb's theorem from GII.\n\nSuppose that $T\\vdash P(\\ulcorner X\\urcorner)\\rightarrow X$.\n\nThen $T\\vdash \\neg X \\rightarrow \\neg P(\\ulcorner X\\urcorner)$.\n\nWhich means that $T + \\neg X\\vdash \\neg P(\\ulcorner X\\urcorner)$.\n\nFrom Gödel's second incompleteness theorem, that means that $T+\\neg X$ is inconsistent, since it proves $\\neg P(\\ulcorner X\\urcorner)$ for a disprovable $X$.\n\nSince $T$ was consistent before we introduced $\\neg X$ as an axiom, then that means that $X$ is actually a consequence of $T$. By completeness, that means that we should be able to prove $X$ from $T$'s axioms, so $T\\vdash X$ and the proof is done.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JaimeSevillaMolina'
],
childIds: [],
parentIds: [
'lobs_theorem'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: 'lobs_theorem',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17483',
pageId: '5hs',
userId: 'JaimeSevillaMolina',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-25 08:03:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17231',
pageId: '5hs',
userId: 'JaimeSevillaMolina',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-21 17:07:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17225',
pageId: '5hs',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'newParent',
createdAt: '2016-07-21 16:40:24',
auxPageId: 'lobs_theorem',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17223',
pageId: '5hs',
userId: 'JaimeSevillaMolina',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-21 16:40:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}