{
localUrl: '../page/5k7.html',
arbitalUrl: 'https://arbital.com/p/5k7',
rawJsonUrl: '../raw/5k7.json',
likeableId: '3224',
likeableType: 'page',
myLikeValue: '0',
likeCount: '3',
dislikeCount: '0',
likeScore: '3',
individualLikes: [
'EricBruylant',
'KevinClancy',
'IzaakMeckler'
],
pageId: '5k7',
edit: '4',
editSummary: '"I'll" -> "we'll" as per https://arbital.com/p/arbital_style_guide/; also capitalized a letter',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Exponential notation for function spaces',
clickbait: 'Why $Y^X$ is good notation for the space of maps from $X$ to $Y$ ',
textLength: '1502',
alias: '5k7',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricRogstad',
editCreatedAt: '2016-07-25 07:14:47',
pageCreatorId: 'IzaakMeckler',
pageCreatedAt: '2016-07-24 20:47:32',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '48',
text: 'If $X$ and $Y$ are sets, the set of functions from $X$ to $Y$ (often written $X \\to Y$) is sometimes also written $Y^X$. This latter notation, which we'll call *exponential notation*, is related to the notation for finite powers of sets (e.g., $Y^3$ for the set of triples of elements of $Y$) as well as the notation of exponentiation for numbers.\n\nWithout further ado, here are some reasons this is good notation.\n\n- A function $f : X \\to Y$ can be thought of as an "$X$ wide" tuple of elements of $Y$. That is, a tuple of elements of $Y$ where the positions in the tuple are given by elements of $X$, generalizing the notation $Y^n$ which denotes the set of $n$ wide tuples of elements of $Y$. Note that if $|X| = n$, then $Y^X \\cong Y^n$.\n\n- This notion of exponentiation together with cartesian product as multiplication and disjoint union as addition satisfy the same relations as exponentiation, multiplication, and addition of natural numbers. Namely, \n\n - $Z^{X \\times Y} \\cong (Z^X)^Y$ (this isomorphism is called currying)\n - $Z^{X + Y} \\cong Z^X \\times Z^Y$\n - $Z^1 \\cong Z$ (where $1$ is a one element set, since there is one function into $Z$ for every element of $Z$)\n - $Z^0 \\cong 1$ (where $0$ is the empty set, since there is one function from the empty set to any set)\n\nMore generally, $Y^X$ is good notation for the exponential object representing $\\text{Hom}_{\\mathcal{C}}(X, Y)$ in an arbitrary cartesian closed category $\\mathcal{C}$ for the first set of reasons listed above.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '3',
maintainerCount: '3',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'IzaakMeckler',
'EricRogstad'
],
childIds: [],
parentIds: [
'math'
],
commentIds: [
'5kr'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17482',
pageId: '5k7',
userId: 'EricRogstad',
edit: '0',
type: 'newParent',
createdAt: '2016-07-25 07:16:04',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17479',
pageId: '5k7',
userId: 'EricRogstad',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-25 07:14:47',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: '"I'll" -> "we'll" as per https://arbital.com/p/arbital_style_guide/; also capitalized a letter'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17461',
pageId: '5k7',
userId: 'IzaakMeckler',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-24 21:57:06',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17458',
pageId: '5k7',
userId: 'IzaakMeckler',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-24 20:48:06',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17457',
pageId: '5k7',
userId: 'IzaakMeckler',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-24 20:47:32',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}