{
  localUrl: '../page/algebraic_monoid.html',
  arbitalUrl: 'https://arbital.com/p/algebraic_monoid',
  rawJsonUrl: '../raw/3h3.json',
  likeableId: '2652',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'JaimeSevillaMolina'
  ],
  pageId: 'algebraic_monoid',
  edit: '7',
  editSummary: '',
  prevEdit: '6',
  currentEdit: '7',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Monoid',
  clickbait: '',
  textLength: '3466',
  alias: 'algebraic_monoid',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-15 11:21:48',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-05-09 06:55:47',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '95',
  text: 'A monoid $M$ is a pair $(X, \\diamond)$ where $X$ is a [set_theory_set set] and $\\diamond$ is an [associative_function associative] binary [3h7 operator] with an identity. $\\diamond$ is often interpreted as concatenation; data structures that support concatenation and have an "empty element" (such as lists, strings, and the natural numbers under addition) are examples of monoids.\n\n Monoids are [3gx algebraic structures]. We write $x \\diamond y$ for the application of $\\diamond$ to $x, y \\in X$, which must be defined. $x \\diamond y$ is commonly abbreviated $xy$ when $\\diamond$ can be inferred from context. The monoid axioms (which govern the behavior of $\\diamond$) are as follows.\n\n1. (Closure) For all $x, y$ in $X$, $xy$ is also in $X$.\n1. (Associativity) For all $x, y, z$ in $X$, $x(yz) = (xy)z$.\n2. (Identity) There is an $e$ in $X$ such that, for all $x$ in $X$, $xe = ex = x.$\n\nThe axiom of closure says that $x \\diamond y \\in X$, i.e. that combining two elements of $X$ using $\\diamond$ yields another element of $X$. In other words, $X$ is [3gy closed] under $\\diamond$.\n\nThe axiom of associativity says that $\\diamond$ is an [3h4 associative] operation, which justifies omitting parenthesis when describing the application of $\\diamond$ to many elements in sequence..\n\nThe axiom of identity says that there is some element $e$ in $X$ that $\\diamond$ treats as "empty": If you apply $\\diamond$ to $e$ and $x$, then $\\diamond$ simply returns $x$. The identity is unique: Given two elements $e$ and $z$ that satisfy the axiom of identity, we have $ze = e = ez = z.$ Thus, we can speak of "the identity" $e$ of $M$. $e$ is often written $1$ or $1_M$.\n\n%%%knows-requisite([4c7]):\nEquivalently, a monoid is a category with exactly one object.\n%%%\n\nMonoids are [algebraic_semigroup semigroups] equipped with an identity. [3gd Groups] are monoids with inverses. For more on how monoids relate to other [algerbraic_structure algebraic structures], refer to the [algebraic_structure_tree tree of algebraic structures].\n\n# Notation\n\nGiven a monoid $M = (X, \\diamond)$, we say "$X$ forms a monoid under $\\diamond$." For example, the set of finite bitstrings forms a monoid under concatenation: The set of finite bitstrings is closed under concatenation; concatenation is an associative operation; and the empty bitstring is a finite bitstring that acts like an identity under concatenation. \n\n$X$ is called the [3gz underlying set] of $M$, and $\\diamond$ is called the _monoid operation_. $x \\diamond y$ is usually abbreviated $xy$. $M$ is generally allowed to substitute for $X$ when discussing the monoid. For example, we say that the elements $x, y \\in X$ are "in $M$," and sometimes write "$x, y \\in M$" or talk about the "elements of $M$."\n\n# Examples\n\nBitstrings form a monoid under concatenation, with the empty string as the identity.\n\nThe set of finite lists of elements drawn from $Y$ (for any set $Y$) form a monoid under concatenation, with the empty list as the identity.\n\nThe natural numbers [45h $\\mathbb N$] form a monid under addition, with $0$ as the identity.\n\nMonoids have found some use in functional programming languages such as [https://en.wikipedia.org/wiki/Haskell_(programming_language) Haskell] and [https://en.wikipedia.org/wiki/Scala_(programming_language) Scala], where they are used to generalize over data types in which values can be "combined" (by some operation $\\diamond$) and which include an "empty" value (the identity).\n',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '8',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'NateSoares',
    'PatrickStevens',
    'LouisPaquin'
  ],
  childIds: [],
  parentIds: [
    'algebraic_structure'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'needs_clickbait_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '23229',
      pageId: 'algebraic_monoid',
      userId: 'LouisPaquin',
      edit: '8',
      type: 'newEditProposal',
      createdAt: '2019-11-12 19:30:41',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Typo: monid > monoid'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17129',
      pageId: 'algebraic_monoid',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-19 02:08:00',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13022',
      pageId: 'algebraic_monoid',
      userId: 'PatrickStevens',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-06-15 11:21:48',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12627',
      pageId: 'algebraic_monoid',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-14 12:29:01',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12336',
      pageId: 'algebraic_monoid',
      userId: 'NateSoares',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-10 16:43:41',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9936',
      pageId: 'algebraic_monoid',
      userId: 'NateSoares',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-05-10 23:32:55',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9934',
      pageId: 'algebraic_monoid',
      userId: 'NateSoares',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-05-10 23:28:45',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9710',
      pageId: 'algebraic_monoid',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-05-09 06:55:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9707',
      pageId: 'algebraic_monoid',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-05-09 06:25:58',
      auxPageId: 'algebraic_structure',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {
    lessTechnical: {
      likeableId: '3410',
      likeableType: 'contentRequest',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '54',
      pageId: 'algebraic_monoid',
      requestType: 'lessTechnical',
      createdAt: '2016-08-19 01:16:05'
    }
  }
}