{
  localUrl: '../page/algebraic_structure_tree.html',
  arbitalUrl: 'https://arbital.com/p/algebraic_structure_tree',
  rawJsonUrl: '../raw/5dz.json',
  likeableId: '3085',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '3',
  dislikeCount: '0',
  likeScore: '3',
  individualLikes: [
    'EricBruylant',
    'EricRogstad',
    'EnriqueGavidia'
  ],
  pageId: 'algebraic_structure_tree',
  edit: '6',
  editSummary: '',
  prevEdit: '5',
  currentEdit: '6',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Algebraic structure tree',
  clickbait: 'When is a monoid a semilattice? What's the difference between a semigroup and a groupoid? Find out here!',
  textLength: '3713',
  alias: 'algebraic_structure_tree',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'RyanHendrickson',
  editCreatedAt: '2016-07-16 20:39:11',
  pageCreatorId: 'RyanHendrickson',
  pageCreatedAt: '2016-07-16 17:09:39',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '154',
  text: 'Some classes of [-3gx] are given special names based on the properties of their sets and operations. These terms grew organically over the history of modern mathematics, so the overall list of names is a bit arbitrary (and in a few cases, some authors will use slightly different assumptions about certain terms, such as whether a semiring needs to have identity elements). This list is intended to clarify the situation to someone who has some familiarity with what an algebraic structure is, but not a lot of experience with using these specific terms.\n\n%%comment:Tree is the wrong word; this should be more of an algebraic structure collection of disjoint directed acyclic graphs? But this is what other pages seem to have chosen to link to, so here we are!%%\n\n# One set, one binary operation\n\n* [Groupoid], sometimes known as a magma. This is the freebie. Have a set and a binary operation? That's a groupoid.\n    * A [-semigroup] is a groupoid where *the operation is [3h4 associative]*.\n        * A [-3h3] is a semigroup where *the operation has an [-54p]*.\n            * A [-3gd] is a monoid where *every element has an [-inverse_element] under the binary operation*.\n                * An [3h2] is a group where *the binary operation is [3jb commutative]*.\n        * A [-semilattice] is a semigroup where *the operation is [Idempotent_operation idempotent] and commutative*.\n    * A [-quasigroup] is a groupoid where *every element has a [quotient_algebra left and right quotient] under the binary operation* (sometimes called the [Latin_square_property]).\n        * A [Algebraic_loop loop] is a quasigroup *with identity*.\n        * A **group**, as defined above, can also be defined as a (non-empty) quasigroup where *the operation is associative* ([ quotients and associativity give a two-sided identity and two-sided inverses], provided there's at least one element to be that identity).\n\n# One set, two binary operations\n\nFor the below, we'll use $*$ and $\\circ$ to denote the two binary operations in question. It might help to think of $*$ as "like addition" and $\\circ$ as "like multiplication", but be careful&mdash;in most of these structures, properties of addition and multiplication like commutativity won't be assumed!\n\n* [Ringoid] assumes only that $\\circ$ distributes over $*$&mdash;in other words, $a \\circ (b * c) = (a \\circ b) * (a \\circ c)$ and $(a * b) \\circ c = (a \\circ c) * (b \\circ c)$.\n    * A [-semiring] is a ringoid where *both $*$ and $\\circ$ define semigroups*.\n        * An [-additive_semiring] is a semiring where $*$ *is commutative*.\n            * A [-rig] is an additive semiring where $*$ *has an identity element*. (It's almost a ring! It's just missing <b>n</b>egatives.)\n                * A [-3gq] is a rig where *every element has an inverse element under* $*$. (Some authors also require $\\circ$ to have an identity to call the structure a ring.)\n                    * A **ring with unity** is a ring where $\\circ$ *has an identity*. (Some authors just use the word "ring" for this; others use variations like "unit ring".)\n                        * A [-division_ring] is a ring with unity where *every element (except for the identity of $*$) has an inverse element under* $\\circ$.\n                            * A [481 field] is a division ring where $\\circ$ *is commutative*.\n    * A [46c lattice] is a ringoid where *both $*$ and $\\circ$ define semilattices, and satisfy the absorption laws ($a \\circ (a * b) = a * (a \\circ b) = a$)*. (While we'll continue to use $*$ and $\\circ$ here, the two operations of a lattice are almost always denoted with [3rc $\\wedge$ and $\\vee$].)\n        * A [-bounded_lattice] is a lattice where *both operations have identities*.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '3',
  maintainerCount: '3',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'RyanHendrickson',
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'algebraic_structure'
  ],
  commentIds: [
    '5fb'
  ],
  questionIds: [],
  tagIds: [
    'start_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18524',
      pageId: 'algebraic_structure_tree',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-08-06 19:28:03',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18522',
      pageId: 'algebraic_structure_tree',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-06 19:28:02',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3091',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '16930',
      pageId: 'algebraic_structure_tree',
      userId: 'RyanHendrickson',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-16 20:39:11',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16919',
      pageId: 'algebraic_structure_tree',
      userId: 'EricBruylant',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-16 20:05:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16916',
      pageId: 'algebraic_structure_tree',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-16 19:52:42',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'switched note to comment'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16915',
      pageId: 'algebraic_structure_tree',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-16 19:51:36',
      auxPageId: 'algebraic_structure',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16913',
      pageId: 'algebraic_structure_tree',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-07-16 19:51:27',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16906',
      pageId: 'algebraic_structure_tree',
      userId: 'KevinClancy',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-16 19:13:49',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16885',
      pageId: 'algebraic_structure_tree',
      userId: 'RyanHendrickson',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-16 17:53:38',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16882',
      pageId: 'algebraic_structure_tree',
      userId: 'RyanHendrickson',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-16 17:40:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16879',
      pageId: 'algebraic_structure_tree',
      userId: 'RyanHendrickson',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-16 17:09:40',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16878',
      pageId: 'algebraic_structure_tree',
      userId: 'RyanHendrickson',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-16 17:09:39',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}