{
  localUrl: '../page/alternating_group_is_simple.html',
  arbitalUrl: 'https://arbital.com/p/alternating_group_is_simple',
  rawJsonUrl: '../raw/4jb.json',
  likeableId: '2752',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'alternating_group_is_simple',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'The alternating groups on more than four letters are simple',
  clickbait: 'The alternating groups are the most accessible examples of simple groups, and this fact also tells us that the symmetric groups are "complicated" in some sense.',
  textLength: '3336',
  alias: 'alternating_group_is_simple',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-17 19:19:24',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-17 19:14:06',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '57',
  text: 'Let $n > 4$ be a [-45h]. Then the [-4hf] $A_n$ on $n$ elements is [simple_group simple].\n\n# Proof\n\nWe go by [mathematical_induction induction] on $n$.\nThe base case of $n=5$ [4jf we treat separately].\n\nFor the inductive step: let $n \\geq 6$, and suppose $H$ is a nontrivial [-4h6] of $A_n$.\nUltimately we aim to show that $H$ contains the $3$-[49f cycle] $(123)$; since $H$ [subgroup_normal_iff_union_of_conjugacy_classes is a union of conjugacy classes], and since the $3$-cycles [splitting_conjugacy_classes_in_alternating_group form a conjugacy class] in $A_n$, this means every $3$-cycle is in $H$ and [4hs hence] $H = A_n$.\n\n## Lemma: $H$ contains a member of $A_{n-1}$\nTo start, we will show that at least $H$ contains *something* from $A_{n-1}$ (which we view as all the elements of $A_n$ which don't change the letter $n$). %%note:Recall that $A_n$ [3t9 acts] naturally on the set of "letters" $\\{1,2,\\dots, n \\}$ by permutation.%%\n(This approach has to be useful for an induction proof, because we need some way of introducing the simplicity of $A_{n-1}$.)\nThat is, we will show that there is some $\\sigma \\in H$ with $\\sigma \\not = e$, such that $\\sigma(n) = n$.\n\nLet $\\sigma \\in H$, where $\\sigma$ is not the identity.\n$\\sigma$ certainly sends $n$ somewhere; say $\\sigma(n) = i$, where $i \\not = n$ (since if it is, we're done immediately).\n\nThen if we can find some $\\sigma' \\in H$, not equal to $\\sigma$, such that $\\sigma'(n) = i$, we are done: $\\sigma^{-1} \\sigma'(n) = n$.\n\n$\\sigma$ must move something other than $i$ (that is, there must be $j \\not = i$ such that $\\sigma(j) \\not = j$), because if it did not, it would be the transposition $(n i)$, which is not in $A_n$ because it is an odd number of transpositions.\nHence $\\sigma(j) \\not = j$ and $j \\not = i$; also $j \\not = n$ because if it were, [todo: this]\n\nNow, since $n \\geq 6$, we can pick $x, y$ distinct from $n, i, j, \\sigma(j)$.\nThen set $\\sigma' = (jxy) \\sigma (jxy)^{-1}$, which must lie in $H$ because $H$ is closed under [4gk conjugation].\n\nThen $\\sigma'(n) = i$; and $\\sigma' \\not = \\sigma$, because $\\sigma'(j) = \\sigma(y)$ which is not equal to $\\sigma(j)$ (since $y \\not = j$).\nHence $\\sigma'$ and $\\sigma$ have different effects on $j$ so they are not equal.\n\n## Lemma: $H$ contains all of $A_{n-1}$\nNow that we have shown $H$ contains some member of $A_{n-1}$.\nBut $H \\cap A_{n-1}$ is normal in $A_n$, because $H$ is normal in $A_n$ and it is [4h6 _intersect _subgroup _is _normal the intersection of a subgroup with a normal subgroup].\nTherefore by the inductive hypothesis, $H \\cap A_{n-1}$ is either the trivial group or is $A_{n-1}$ itself.\n\nBut $H \\cap A_{n-1}$ is certainly not trivial, because our previous lemma gave us a non-identity element in it; so $H$ must actually contain $A_{n-1}$.\n\n## Conclusion\n\nFinally, $H$ contains $A_{n-1}$ so it contains $(123)$ in particular; so we are done by the initial discussion.\n\n# Behaviour for $n \\leq 4$\n- $A_1$ is the trivial group so is vacuously not simple.\n- $A_2$ is also the trivial group. \n- $A_3$ is isomorphic to the [-47y] $C_3$ on three generators, so it is simple: it has no nontrivial proper subgroups, let alone normal ones.\n- $A_4$ has the following normal subgroup (the [klein_four_group Klein four-group]): $\\{ e, (12)(34), (13)(24), (14)(23) \\}$. Therefore $A_4$ is not simple.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'alternating_group'
  ],
  commentIds: [
    '4lf'
  ],
  questionIds: [],
  tagIds: [
    'stub_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4170',
      parentId: 'simple_group',
      childId: 'alternating_group_is_simple',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13670',
      pageId: 'alternating_group_is_simple',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-17 19:19:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13669',
      pageId: 'alternating_group_is_simple',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-17 19:18:48',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13657',
      pageId: 'alternating_group_is_simple',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-17 19:14:06',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13653',
      pageId: 'alternating_group_is_simple',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-17 19:13:49',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13633',
      pageId: 'alternating_group_is_simple',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-17 18:06:55',
      auxPageId: 'simple_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13623',
      pageId: 'alternating_group_is_simple',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-17 18:04:31',
      auxPageId: 'alternating_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}