{
localUrl: '../page/arithmetical_hierarchy.html',
arbitalUrl: 'https://arbital.com/p/arithmetical_hierarchy',
rawJsonUrl: '../raw/1mg.json',
likeableId: '578',
likeableType: 'page',
myLikeValue: '0',
likeCount: '5',
dislikeCount: '0',
likeScore: '5',
individualLikes: [
'EricBruylant',
'LironShapira',
'JaimeSevillaMolina',
'IanPitchford',
'StephanieZolayvar'
],
pageId: 'arithmetical_hierarchy',
edit: '5',
editSummary: '',
prevEdit: '4',
currentEdit: '5',
wasPublished: 'true',
type: 'wiki',
title: 'Arithmetical hierarchy',
clickbait: 'The arithmetical hierarchy is a way of classifying logical statements by the number of clauses saying "for every object" and "there exists an object".',
textLength: '6041',
alias: 'arithmetical_hierarchy',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EliezerYudkowsky',
editCreatedAt: '2016-01-17 00:51:28',
pageCreatorId: 'EliezerYudkowsky',
pageCreatedAt: '2016-01-16 23:50:04',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '592',
text: '[summary: The arithmetical hierarchy classifies logical statements by the number of nested clauses saying "for every object" and "there exists an object". Statements with one "for every object" clause belong in $\\Pi_1$, and statements with one "there exists an object" clause belong in $\\Sigma_1$. Saying "There exists an object x such that (some $\\Pi_n$ statement treating x as a constant)" creates a $\\Sigma_{n+1}$ statement. Similarly, adding a "For every x" clause outside a $\\Sigma_n$ statement creates a $\\Pi_{n+1}$ statement. Statements that can be formulated in both $\\Pi_n$ and $\\Sigma_n$ are said to lie in $\\Delta_n$. Some interesting consequences are that $\\Pi_1$ statements are falsifiable by observation, $\\Sigma_1$ statements are verifiable by observation, and statements strictly in higher classes can only be probabilistically verified by observation.]\n\n[summary(Technical): The arithmetical hierarchy classifies statements by the number of nested, unbounded quantifiers they contain. The classes $\\Delta_0$, $\\Pi_0$, and $\\Sigma_0$ are equivalent and include statements containing only bounded quantifiers, e.g. $\\forall x < 10: \\exists y < x: x + y < 10$. If, treating $x, y, z...$ as constants, a statement $\\phi(x, y, z...)$ would be in $\\Sigma_n,$ then adjoining the unbounded universal quantifiers $\\forall x: \\forall y: \\forall z: ... \\phi(x, y, z...)$ creates a $\\Pi_{n+1}$ statement. Similarly, adjoining existential quantifiers to a $\\Pi_n$ statement creates a $\\Sigma_{n+1}$ statement. Statements that can be equivalently formulated to be in both $\\Pi_n$ and $\\Sigma_n$ are said to lie in $\\Delta_n$. Interesting consequences include, e.g., $\\Pi_1$ statements are falsifiable by simple observation, $\\Sigma_1$ statements are verifiable by observation, and statements strictly in higher classes can only be probabilistically verified by observation.]\n\nThe arithmetical hierarchy classifies statements according to the number of unbounded $\\forall x$ and $\\exists y$ quantifiers, treating adjacent quantifiers of the same type as a single quantifier.\n\nThe formula $\\phi(x, y) \\leftrightarrow [(x + y) = (y + x)],$ treating $x$ and $y$ as constants, contains no quantifiers and would occupy the lowest level of the hierarchy, $\\Delta_0 = \\Pi_0 = \\Sigma_0.$ (Assuming that the operators $+$ and $=$ are themselves considered to be in $\\Delta_0$, or from another perspective, that for any particular $c$ and $d$ we can verify whether $c + d = d + c$ in bounded time.)\n\nAdjoining any number of $\\forall x_1: \\forall x_2: ...$ quantifiers to a statement that would be in $\\Sigma_n$ if the $x_i$ were considered as constants, creates a statement in $\\Pi_{n+1}.$ Thus, the statement $\\forall x: (x + 3) = (3 + x)$ is in $\\Pi_1.$\n\nSimilarly, adjoining $\\exists x_1: \\exists x_2: ...$ to a statement in $\\Pi_n$ creates a statement in $\\Sigma_{n+1}.$ Thus, the statement $\\exists y: \\forall x: (x + y) = (y + x)$ is in $\\Sigma_2$, while the statement $\\exists y: \\exists x: (x + y) = (y + x)$ is in $\\Sigma_1.$\n\nStatements in both $\\Pi_n$ and $\\Sigma_n$ (e.g. because they have provably equivalent formulations belonging to both classes) are said to lie in $\\Delta_n.$\n\nQuantifiers that can be bounded by $\\Delta_0$ functions of variables already introduced are ignored by this classification schema: the sentence $\\forall x: \\exists y < x: (x + y) = (y + x)$ is said to lie in $\\Pi_1$, not $\\Pi_2$. We can justify this by observing that for any particular $c,$ the statement $\\forall x < c: \\phi(x)$ can be expanded into the non-quantified statement $\\phi(0) \\wedge \\phi(1) ... \\wedge \\phi(c)$ and similarly $\\exists x < c: \\phi(x)$ expands to $\\phi(0) \\vee \\phi(1) \\vee ...$\n\nThis in turn justifies collapsing adjacent quantifiers of the same type inside the classification schema. Since, e.g., we can uniquely encode every pair (x, y) in a single number $z = 2^x \\cdot 3^y$, to say "there exists a pair (x, y)" or "for every pair (x, y)" it suffices to quantify over z encoding (x, y) with x and y less than z.\n\nWe say that $\\Delta_{n+1}$ includes the entire sets $\\Pi_n$ and $\\Sigma_n$, since from a $\\Pi_{n}$ statement we can produce a $\\Pi_{n+1}$ statement just by adding an inner $\\exists$ quantifier and then ignoring it, and we can obtain a $\\Sigma_{n+1}$ statement from a $\\Pi_{n}$ statement by adding an outer $\\forall$ quantifier and ignoring it, etcetera.\n\nThis means that the arithmetic hierarchy talks about *power sufficient to resolve statements*. To say $\\phi \\in \\Pi_n$ asserts that if you can resolve all $\\Pi_n$ formulas then you can resolve $\\phi$, which might potentially also be doable with less power than $\\Pi_n$, but can definitely not require more power than $\\Pi_n.$\n\n# Consequences for epistemic properties\n\nAll and only statements in $\\Sigma_1$ are *verifiable by observation*. If $\\phi \\in \\Delta_0$ then the sentence $\\exists x: \\phi(x)$ can be positively known by searching for and finding a single example. Conversely, if a statement involves an unbounded universal quantifier, we can never be sure of it through simple observation because we can't observe the truth for every possible number.\n\nAll and only statements in $\\Pi_1$ are *falsifiable by observation*. If $\\phi$ can be tested in bounded time, then we can falsify the whole statement $\\forall x: \\phi(x)$ by presenting some single x of which $\\phi$ is false. Conversely, if a statement involves an unbounded existential quantifier, we can never falsify it directly through a bounded number of observations because there could always be some higher, as-yet untested number that makes the sentence true.\n\nThis doesn't mean we can't get [1ly probabilistic confirmation and disconfirmation] of sentences outside $\\Sigma_1$ and $\\Pi_1.$ E.g. for a $\\Pi_2$ statement, "For every x there is a y", each time we find an example of a y for another x, we might become a little more confident, and if for some x we fail to find a y after long searching, we might become a little less confident in the entire statement.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '2016-02-24 05:54:44',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'EliezerYudkowsky'
],
childIds: [
'1mj'
],
parentIds: [
'math'
],
commentIds: [],
questionIds: [],
tagIds: [
'c_class_meta_tag',
'needs_links_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [
{
id: '1794',
parentId: 'arithmetical_hierarchy',
childId: '1mj',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
requirements: [
{
id: '1789',
parentId: 'reads_algebra',
childId: 'arithmetical_hierarchy',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
},
{
id: '1795',
parentId: 'reads_logic',
childId: 'arithmetical_hierarchy',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [
{
id: '7',
pageId: 'arithmetical_hierarchy',
lensId: '1mj',
lensIndex: '0',
lensName: 'If you don't read logic',
lensSubtitle: '',
createdBy: '1',
createdAt: '2016-06-17 21:58:56',
updatedBy: '1',
updatedAt: '2016-06-17 21:58:56'
}
],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18620',
pageId: 'arithmetical_hierarchy',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-08 15:16:49',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18619',
pageId: 'arithmetical_hierarchy',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-08-08 15:16:43',
auxPageId: 'b_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18617',
pageId: 'arithmetical_hierarchy',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-08 15:16:40',
auxPageId: 'needs_links_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18609',
pageId: 'arithmetical_hierarchy',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-08 15:09:35',
auxPageId: 'b_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5386',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '5',
type: 'newEdit',
createdAt: '2016-01-17 00:51:28',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5385',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '4',
type: 'newEdit',
createdAt: '2016-01-17 00:50:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5384',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '3',
type: 'newEdit',
createdAt: '2016-01-17 00:49:40',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5383',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '2',
type: 'newRequirement',
createdAt: '2016-01-17 00:02:56',
auxPageId: 'reads_logic',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5379',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '2',
type: 'newTeacher',
createdAt: '2016-01-17 00:01:35',
auxPageId: '1mj',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5375',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '2',
type: 'newChild',
createdAt: '2016-01-17 00:00:58',
auxPageId: '1mj',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5374',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '2',
type: 'newEdit',
createdAt: '2016-01-17 00:00:20',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5367',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '1',
type: 'newEdit',
createdAt: '2016-01-16 23:50:04',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5366',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newRequirement',
createdAt: '2016-01-16 23:49:18',
auxPageId: 'reads_algebra',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5364',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'deleteRequirement',
createdAt: '2016-01-16 22:57:21',
auxPageId: 'reads_algebra',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5362',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newRequirement',
createdAt: '2016-01-16 22:56:19',
auxPageId: 'reads_algebra',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5360',
pageId: 'arithmetical_hierarchy',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newParent',
createdAt: '2016-01-16 22:54:57',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}