{
localUrl: '../page/cardinality.html',
arbitalUrl: 'https://arbital.com/p/cardinality',
rawJsonUrl: '../raw/4w5.json',
likeableId: '2874',
likeableType: 'page',
myLikeValue: '0',
likeCount: '3',
dislikeCount: '0',
likeScore: '3',
individualLikes: [
'EricBruylant',
'TravisRivera',
'EricRogstad'
],
pageId: 'cardinality',
edit: '9',
editSummary: '',
prevEdit: '8',
currentEdit: '9',
wasPublished: 'true',
type: 'wiki',
title: 'Cardinality',
clickbait: 'The "size" of a set, or the "number of elements" that it has.',
textLength: '3141',
alias: 'cardinality',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'DylanHendrickson',
editCreatedAt: '2016-10-05 19:51:17',
pageCreatorId: 'JoeZeng',
pageCreatedAt: '2016-06-28 15:05:38',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '2',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '62',
text: '[summary(brief): The **cardinality** of a [-3jz] is a formalization of the "number of [5xy elements]" in the set.]\n\n[summary: If $A$ is a finite set then the cardinality of $A$, denoted $|A|$, is the number of elements $A$ contains. When $|A| = n$, we say that $A$ is a set of cardinality $n$. There exists a [499 bijection] from any finite set of cardinality $n$ to the set $\\{0, ..., (n-1)\\}$ containing the first $n$ natural numbers.\n\nTwo infinite sets have the same cardinality if there exists a bijection between them. Any set in bijective correspondence with [45h $\\mathbb N$] is called __countably infinite__, while any infinite set that is not in bijective correspondence with $\\mathbb N$ is call **[2w0 uncountably infinite]**. All countably infinite sets have the same cardinality, whereas there are multiple distinct uncountably infinite cardinalities.]\n\n[summary(technical): The cardinality (or size) $|X|$ of a set $X$ is the number of elements in $X.$ For example, letting $X = \\{a, b, c, d\\}, |X|=4.$\n\n[todo: technical summary of infinite cardinality]]\n\nThe **cardinality** of a [-3jz] is a formalization of the "number of elements" in the set.\n\nSet cardinality is an [-53y]. Two sets have the same cardinality if (and only if) there exists a [499 bijection] between them.\n\n## Definition of equivalence classes\n\n### Finite sets\n\nA set $S$ has a cardinality of a [-45h] $n$ if there exists a bijection between $S$ and the set of natural numbers from $1$ to $n$. For example, the set $\\{9, 15, 12, 20\\}$ has a bijection with $\\{1, 2, 3, 4\\}$, which is simply mapping the $m$th element in the first set to $m$; therefore it has a cardinality of $4$.\n\nWe can see that this equivalence class is [ well-defined] — if there exist two sets $S$ and $T$, and there exist bijective functions $f : S \\to \\{1, 2, 3, \\ldots, n\\}$ and $g : \\{1, 2, 3, \\ldots, n\\} \\to T$, then $g \\circ f$ is a bijection between $S$ and $T$, and so the two sets also have the same cardinality as each other, which is $n$.\n\nThe cardinality of a finite set is always a natural number, never a fraction or decimal.\n\n### Infinite sets\n\nAssuming the [69b axiom of choice], the cardinalities of infinite sets are represented by the [aleph_numbers]. A set has a cardinality of $\\aleph_0$ if there exists a bijection between that set and the set of *all* natural numbers. This particular class of sets is also called the class of [-countably_infinite_sets].\n\nLarger infinities (which are [2w0 uncountable]) are represented by higher Aleph numbers, which are $\\aleph_1, \\aleph_2, \\aleph_3,$ and so on through the [ordinal ordinals].\n\n**In the absence of the Axiom of Choice**\n\nWithout the axiom of choice, not every set may be [55r well-ordered], so not every set bijects with an [-ordinal], and so not every set bijects with an aleph.\nInstead, we may use the rather cunning [Scott_trick].\n\n%%todo: Examples and exercises (possibly as lenses) %%\n\n%%todo: Split off a more accessible cardinality page that explains the difference between finite, countably infinite, and uncountably infinite cardinalities without mentioning alephs, ordinals, or the axiom of choice.%%',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '3',
maintainerCount: '3',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'If $A$ is a finite set then the cardinality of $A$, denoted $|A|$, is the number of elements $A$ contains. When $|A| = n$, we say that $A$ is a set of cardinality $n$. There exists a [499 bijection] from any finite set of cardinality $n$ to the set $\\{0, ..., (n-1)\\}$ containing the first $n$ natural numbers.\n\nTwo infinite sets have the same cardinality if there exists a bijection between them. Any set in bijective correspondence with [45h $\\mathbb N$] is called __countably infinite__, while any infinite set that is not in bijective correspondence with $\\mathbb N$ is call **[2w0 uncountably infinite]**. All countably infinite sets have the same cardinality, whereas there are multiple distinct uncountably infinite cardinalities.',
brief: 'The **cardinality** of a [-3jz] is a formalization of the "number of [5xy elements]" in the set.',
technical: 'The cardinality (or size) $|X|$ of a set $X$ is the number of elements in $X.$ For example, letting $X = \\{a, b, c, d\\}, |X|=4.$\n\n[todo: technical summary of infinite cardinality]'
},
creatorIds: [
'JoeZeng',
'EricBruylant',
'EricRogstad',
'DylanHendrickson',
'PatrickStevens'
],
childIds: [],
parentIds: [
'set_mathematics'
],
commentIds: [],
questionIds: [],
tagIds: [
'split_by_mastery_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [
{
id: '6308',
parentId: 'cardinality',
childId: 'set_mathematics',
type: 'subject',
creatorId: 'EricBruylant',
createdAt: '2016-08-27 13:47:23',
level: '1',
isStrong: 'true',
everPublished: 'true'
},
{
id: '6317',
parentId: 'cardinality',
childId: 'cardinality',
type: 'subject',
creatorId: 'EricBruylant',
createdAt: '2016-08-27 14:30:33',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [],
subjects: [
{
id: '6317',
parentId: 'cardinality',
childId: 'cardinality',
type: 'subject',
creatorId: 'EricBruylant',
createdAt: '2016-08-27 14:30:33',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '3575',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '19865',
pageId: 'cardinality',
userId: 'DylanHendrickson',
edit: '9',
type: 'newEdit',
createdAt: '2016-10-05 19:51:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3576',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '19862',
pageId: 'cardinality',
userId: 'DylanHendrickson',
edit: '8',
type: 'newEdit',
createdAt: '2016-10-05 19:43:56',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19300',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '7',
type: 'newEdit',
createdAt: '2016-08-27 14:31:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'merged in Size of set and the summary from Set, added some todos and a link'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19298',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newTeacher',
createdAt: '2016-08-27 14:30:34',
auxPageId: 'cardinality',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19299',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newSubject',
createdAt: '2016-08-27 14:30:34',
auxPageId: 'cardinality',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19297',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-27 14:22:35',
auxPageId: 'split_by_mastery_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19274',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newTeacher',
createdAt: '2016-08-27 13:47:24',
auxPageId: 'set_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19262',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newChild',
createdAt: '2016-08-27 13:28:34',
auxPageId: 'set_size',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3157',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17236',
pageId: 'cardinality',
userId: 'EricRogstad',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-21 17:53:54',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: '[-set] -> [-set_mathematics]'
},
{
likeableId: '2880',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '14827',
pageId: 'cardinality',
userId: 'EricRogstad',
edit: '5',
type: 'newEdit',
createdAt: '2016-06-29 21:12:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'minor rewordings'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14816',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-29 18:05:39',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14815',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newAlias',
createdAt: '2016-06-29 18:05:38',
auxPageId: '',
oldSettingsValue: 'set_cardinality',
newSettingsValue: 'cardinality'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14814',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'deleteParent',
createdAt: '2016-06-29 18:04:48',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14812',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-06-29 18:04:47',
auxPageId: 'set_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14810',
pageId: 'cardinality',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-06-29 18:01:43',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14771',
pageId: 'cardinality',
userId: 'JoeZeng',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-29 01:12:37',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'Use a smaller heading level for a subheading.'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14724',
pageId: 'cardinality',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-28 20:33:47',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14692',
pageId: 'cardinality',
userId: 'JoeZeng',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-28 15:05:38',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}