{ localUrl: '../page/cardinality.html', arbitalUrl: 'https://arbital.com/p/cardinality', rawJsonUrl: '../raw/4w5.json', likeableId: '2874', likeableType: 'page', myLikeValue: '0', likeCount: '3', dislikeCount: '0', likeScore: '3', individualLikes: [ 'EricBruylant', 'TravisRivera', 'EricRogstad' ], pageId: 'cardinality', edit: '9', editSummary: '', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'Cardinality', clickbait: 'The "size" of a set, or the "number of elements" that it has.', textLength: '3141', alias: 'cardinality', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'DylanHendrickson', editCreatedAt: '2016-10-05 19:51:17', pageCreatorId: 'JoeZeng', pageCreatedAt: '2016-06-28 15:05:38', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '2', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '62', text: '[summary(brief): The **cardinality** of a [-3jz] is a formalization of the "number of [5xy elements]" in the set.]\n\n[summary: If $A$ is a finite set then the cardinality of $A$, denoted $|A|$, is the number of elements $A$ contains. When $|A| = n$, we say that $A$ is a set of cardinality $n$. There exists a [499 bijection] from any finite set of cardinality $n$ to the set $\\{0, ..., (n-1)\\}$ containing the first $n$ natural numbers.\n\nTwo infinite sets have the same cardinality if there exists a bijection between them. Any set in bijective correspondence with [45h $\\mathbb N$] is called __countably infinite__, while any infinite set that is not in bijective correspondence with $\\mathbb N$ is call **[2w0 uncountably infinite]**. All countably infinite sets have the same cardinality, whereas there are multiple distinct uncountably infinite cardinalities.]\n\n[summary(technical): The cardinality (or size) $|X|$ of a set $X$ is the number of elements in $X.$ For example, letting $X = \\{a, b, c, d\\}, |X|=4.$\n\n[todo: technical summary of infinite cardinality]]\n\nThe **cardinality** of a [-3jz] is a formalization of the "number of elements" in the set.\n\nSet cardinality is an [-53y]. Two sets have the same cardinality if (and only if) there exists a [499 bijection] between them.\n\n## Definition of equivalence classes\n\n### Finite sets\n\nA set $S$ has a cardinality of a [-45h] $n$ if there exists a bijection between $S$ and the set of natural numbers from $1$ to $n$. For example, the set $\\{9, 15, 12, 20\\}$ has a bijection with $\\{1, 2, 3, 4\\}$, which is simply mapping the $m$th element in the first set to $m$; therefore it has a cardinality of $4$.\n\nWe can see that this equivalence class is [ well-defined] — if there exist two sets $S$ and $T$, and there exist bijective functions $f : S \\to \\{1, 2, 3, \\ldots, n\\}$ and $g : \\{1, 2, 3, \\ldots, n\\} \\to T$, then $g \\circ f$ is a bijection between $S$ and $T$, and so the two sets also have the same cardinality as each other, which is $n$.\n\nThe cardinality of a finite set is always a natural number, never a fraction or decimal.\n\n### Infinite sets\n\nAssuming the [69b axiom of choice], the cardinalities of infinite sets are represented by the [aleph_numbers]. A set has a cardinality of $\\aleph_0$ if there exists a bijection between that set and the set of *all* natural numbers. This particular class of sets is also called the class of [-countably_infinite_sets].\n\nLarger infinities (which are [2w0 uncountable]) are represented by higher Aleph numbers, which are $\\aleph_1, \\aleph_2, \\aleph_3,$ and so on through the [ordinal ordinals].\n\n**In the absence of the Axiom of Choice**\n\nWithout the axiom of choice, not every set may be [55r well-ordered], so not every set bijects with an [-ordinal], and so not every set bijects with an aleph.\nInstead, we may use the rather cunning [Scott_trick].\n\n%%todo: Examples and exercises (possibly as lenses) %%\n\n%%todo: Split off a more accessible cardinality page that explains the difference between finite, countably infinite, and uncountably infinite cardinalities without mentioning alephs, ordinals, or the axiom of choice.%%', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '3', maintainerCount: '3', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'If $A$ is a finite set then the cardinality of $A$, denoted $|A|$, is the number of elements $A$ contains. When $|A| = n$, we say that $A$ is a set of cardinality $n$. There exists a [499 bijection] from any finite set of cardinality $n$ to the set $\\{0, ..., (n-1)\\}$ containing the first $n$ natural numbers.\n\nTwo infinite sets have the same cardinality if there exists a bijection between them. Any set in bijective correspondence with [45h $\\mathbb N$] is called __countably infinite__, while any infinite set that is not in bijective correspondence with $\\mathbb N$ is call **[2w0 uncountably infinite]**. All countably infinite sets have the same cardinality, whereas there are multiple distinct uncountably infinite cardinalities.', brief: 'The **cardinality** of a [-3jz] is a formalization of the "number of [5xy elements]" in the set.', technical: 'The cardinality (or size) $|X|$ of a set $X$ is the number of elements in $X.$ For example, letting $X = \\{a, b, c, d\\}, |X|=4.$\n\n[todo: technical summary of infinite cardinality]' }, creatorIds: [ 'JoeZeng', 'EricBruylant', 'EricRogstad', 'DylanHendrickson', 'PatrickStevens' ], childIds: [], parentIds: [ 'set_mathematics' ], commentIds: [], questionIds: [], tagIds: [ 'split_by_mastery_meta_tag' ], relatedIds: [], markIds: [], explanations: [ { id: '6308', parentId: 'cardinality', childId: 'set_mathematics', type: 'subject', creatorId: 'EricBruylant', createdAt: '2016-08-27 13:47:23', level: '1', isStrong: 'true', everPublished: 'true' }, { id: '6317', parentId: 'cardinality', childId: 'cardinality', type: 'subject', creatorId: 'EricBruylant', createdAt: '2016-08-27 14:30:33', level: '2', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [], subjects: [ { id: '6317', parentId: 'cardinality', childId: 'cardinality', type: 'subject', creatorId: 'EricBruylant', createdAt: '2016-08-27 14:30:33', level: '2', isStrong: 'true', everPublished: 'true' } ], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '3575', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '19865', pageId: 'cardinality', userId: 'DylanHendrickson', edit: '9', type: 'newEdit', createdAt: '2016-10-05 19:51:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3576', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '19862', pageId: 'cardinality', userId: 'DylanHendrickson', edit: '8', type: 'newEdit', createdAt: '2016-10-05 19:43:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19300', pageId: 'cardinality', userId: 'EricBruylant', edit: '7', type: 'newEdit', createdAt: '2016-08-27 14:31:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'merged in Size of set and the summary from Set, added some todos and a link' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19298', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newTeacher', createdAt: '2016-08-27 14:30:34', auxPageId: 'cardinality', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19299', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newSubject', createdAt: '2016-08-27 14:30:34', auxPageId: 'cardinality', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19297', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-27 14:22:35', auxPageId: 'split_by_mastery_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19274', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newTeacher', createdAt: '2016-08-27 13:47:24', auxPageId: 'set_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19262', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newChild', createdAt: '2016-08-27 13:28:34', auxPageId: 'set_size', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3157', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17236', pageId: 'cardinality', userId: 'EricRogstad', edit: '6', type: 'newEdit', createdAt: '2016-07-21 17:53:54', auxPageId: '', oldSettingsValue: '', newSettingsValue: '[-set] -> [-set_mathematics]' }, { likeableId: '2880', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '14827', pageId: 'cardinality', userId: 'EricRogstad', edit: '5', type: 'newEdit', createdAt: '2016-06-29 21:12:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'minor rewordings' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14816', pageId: 'cardinality', userId: 'EricBruylant', edit: '4', type: 'newEdit', createdAt: '2016-06-29 18:05:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14815', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newAlias', createdAt: '2016-06-29 18:05:38', auxPageId: '', oldSettingsValue: 'set_cardinality', newSettingsValue: 'cardinality' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14814', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'deleteParent', createdAt: '2016-06-29 18:04:48', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14812', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-06-29 18:04:47', auxPageId: 'set_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14810', pageId: 'cardinality', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-06-29 18:01:43', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14771', pageId: 'cardinality', userId: 'JoeZeng', edit: '3', type: 'newEdit', createdAt: '2016-06-29 01:12:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Use a smaller heading level for a subheading.' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14724', pageId: 'cardinality', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-28 20:33:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14692', pageId: 'cardinality', userId: 'JoeZeng', edit: '1', type: 'newEdit', createdAt: '2016-06-28 15:05:38', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }