{
  localUrl: '../page/cardinality.html',
  arbitalUrl: 'https://arbital.com/p/cardinality',
  rawJsonUrl: '../raw/4w5.json',
  likeableId: '2874',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '3',
  dislikeCount: '0',
  likeScore: '3',
  individualLikes: [
    'EricBruylant',
    'TravisRivera',
    'EricRogstad'
  ],
  pageId: 'cardinality',
  edit: '9',
  editSummary: '',
  prevEdit: '8',
  currentEdit: '9',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Cardinality',
  clickbait: 'The "size" of a set, or the "number of elements" that it has.',
  textLength: '3141',
  alias: 'cardinality',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DylanHendrickson',
  editCreatedAt: '2016-10-05 19:51:17',
  pageCreatorId: 'JoeZeng',
  pageCreatedAt: '2016-06-28 15:05:38',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '2',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '62',
  text: '[summary(brief): The **cardinality** of a [-3jz] is a formalization of the "number of [5xy elements]" in the set.]\n\n[summary: If $A$ is a finite set then the cardinality of $A$, denoted $|A|$, is the number of elements $A$ contains. When $|A| = n$, we say that $A$ is a set of cardinality $n$. There exists a [499 bijection] from any finite set of cardinality $n$ to the set $\\{0, ..., (n-1)\\}$ containing the first $n$ natural numbers.\n\nTwo infinite sets have the same cardinality if there exists a bijection between them. Any set in bijective correspondence with [45h $\\mathbb N$] is called __countably infinite__, while any infinite set that is not in bijective correspondence with $\\mathbb N$ is call **[2w0 uncountably infinite]**. All countably infinite sets have the same cardinality, whereas there are multiple distinct uncountably infinite cardinalities.]\n\n[summary(technical): The cardinality (or size) $|X|$ of a set $X$ is the number of elements in $X.$ For example, letting $X = \\{a, b, c, d\\}, |X|=4.$\n\n[todo: technical summary of infinite cardinality]]\n\nThe **cardinality** of a [-3jz] is a formalization of the "number of elements" in the set.\n\nSet cardinality is an [-53y]. Two sets have the same cardinality if (and only if) there exists a [499 bijection] between them.\n\n## Definition of equivalence classes\n\n### Finite sets\n\nA set $S$ has a cardinality of a [-45h] $n$ if there exists a bijection between $S$ and the set of natural numbers from $1$ to $n$. For example, the set $\\{9, 15, 12, 20\\}$ has a bijection with $\\{1, 2, 3, 4\\}$, which is simply mapping the $m$th element in the first set to $m$; therefore it has a cardinality of $4$.\n\nWe can see that this equivalence class is [ well-defined] — if there exist two sets $S$ and $T$, and there exist bijective functions $f : S \\to \\{1, 2, 3, \\ldots, n\\}$ and $g : \\{1, 2, 3, \\ldots, n\\} \\to T$, then $g \\circ f$ is a bijection between $S$ and $T$, and so the two sets also have the same cardinality as each other, which is $n$.\n\nThe cardinality of a finite set is always a natural number, never a fraction or decimal.\n\n### Infinite sets\n\nAssuming the [69b axiom of choice], the cardinalities of infinite sets are represented by the [aleph_numbers]. A set has a cardinality of $\\aleph_0$ if there exists a bijection between that set and the set of *all* natural numbers. This particular class of sets is also called the class of [-countably_infinite_sets].\n\nLarger infinities (which are [2w0 uncountable]) are represented by higher Aleph numbers, which are $\\aleph_1, \\aleph_2, \\aleph_3,$ and so on through the [ordinal ordinals].\n\n**In the absence of the Axiom of Choice**\n\nWithout the axiom of choice, not every set may be [55r well-ordered], so not every set bijects with an [-ordinal], and so not every set bijects with an aleph.\nInstead, we may use the rather cunning [Scott_trick].\n\n%%todo: Examples and exercises (possibly as lenses) %%\n\n%%todo: Split off a more accessible cardinality page that explains the difference between finite, countably infinite, and uncountably infinite cardinalities without mentioning alephs, ordinals, or the axiom of choice.%%',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '3',
  maintainerCount: '3',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'If $A$ is a finite set then the cardinality of $A$, denoted $|A|$, is the number of elements $A$ contains. When $|A| = n$, we say that $A$ is a set of cardinality $n$. There exists a [499 bijection] from any finite set of cardinality $n$ to the set $\\{0, ..., (n-1)\\}$ containing the first $n$ natural numbers.\n\nTwo infinite sets have the same cardinality if there exists a bijection between them. Any set in bijective correspondence with [45h $\\mathbb N$] is called __countably infinite__, while any infinite set that is not in bijective correspondence with $\\mathbb N$ is call **[2w0 uncountably infinite]**. All countably infinite sets have the same cardinality, whereas there are multiple distinct uncountably infinite cardinalities.',
    brief: 'The **cardinality** of a [-3jz] is a formalization of the "number of [5xy elements]" in the set.',
    technical: 'The cardinality (or size) $|X|$ of a set $X$ is the number of elements in $X.$ For example, letting $X = \\{a, b, c, d\\}, |X|=4.$\n\n[todo: technical summary of infinite cardinality]'
  },
  creatorIds: [
    'JoeZeng',
    'EricBruylant',
    'EricRogstad',
    'DylanHendrickson',
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'set_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'split_by_mastery_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [
    {
      id: '6308',
      parentId: 'cardinality',
      childId: 'set_mathematics',
      type: 'subject',
      creatorId: 'EricBruylant',
      createdAt: '2016-08-27 13:47:23',
      level: '1',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '6317',
      parentId: 'cardinality',
      childId: 'cardinality',
      type: 'subject',
      creatorId: 'EricBruylant',
      createdAt: '2016-08-27 14:30:33',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  learnMore: [],
  requirements: [],
  subjects: [
    {
      id: '6317',
      parentId: 'cardinality',
      childId: 'cardinality',
      type: 'subject',
      creatorId: 'EricBruylant',
      createdAt: '2016-08-27 14:30:33',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '3575',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19865',
      pageId: 'cardinality',
      userId: 'DylanHendrickson',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-10-05 19:51:18',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3576',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19862',
      pageId: 'cardinality',
      userId: 'DylanHendrickson',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-10-05 19:43:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19300',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-08-27 14:31:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'merged in Size of set and the summary from Set, added some todos and a link'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19298',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-27 14:30:34',
      auxPageId: 'cardinality',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19299',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-08-27 14:30:34',
      auxPageId: 'cardinality',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19297',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-27 14:22:35',
      auxPageId: 'split_by_mastery_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19274',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-27 13:47:24',
      auxPageId: 'set_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19262',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-27 13:28:34',
      auxPageId: 'set_size',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3157',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17236',
      pageId: 'cardinality',
      userId: 'EricRogstad',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-21 17:53:54',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: '[-set] -> [-set_mathematics]'
    },
    {
      likeableId: '2880',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '14827',
      pageId: 'cardinality',
      userId: 'EricRogstad',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-29 21:12:19',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'minor rewordings'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14816',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-29 18:05:39',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14815',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-06-29 18:05:38',
      auxPageId: '',
      oldSettingsValue: 'set_cardinality',
      newSettingsValue: 'cardinality'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14814',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-06-29 18:04:48',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14812',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-29 18:04:47',
      auxPageId: 'set_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14810',
      pageId: 'cardinality',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-29 18:01:43',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14771',
      pageId: 'cardinality',
      userId: 'JoeZeng',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-29 01:12:37',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Use a smaller heading level for a subheading.'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14724',
      pageId: 'cardinality',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-28 20:33:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14692',
      pageId: 'cardinality',
      userId: 'JoeZeng',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-28 15:05:38',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}