{
  localUrl: '../page/conjugacy_classes_alternating_five_simpler.html',
  arbitalUrl: 'https://arbital.com/p/conjugacy_classes_alternating_five_simpler',
  rawJsonUrl: '../raw/4l0.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'conjugacy_classes_alternating_five_simpler',
  edit: '5',
  editSummary: '',
  prevEdit: '4',
  currentEdit: '5',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Conjugacy classes of the alternating group on five elements: Simpler proof',
  clickbait: 'A listing of the conjugacy classes of the alternating group on five letters, without using heavy theory.',
  textLength: '3128',
  alias: 'conjugacy_classes_alternating_five_simpler',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-18 15:07:31',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-18 13:18:20',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '87',
  text: 'The [-4hf] $A_5$ on five elements has [4bj conjugacy classes] very similar to those of the [-497] $S_5$, but where one of the classes has split in two.\n\nNote that $A_5$ has $60$ elements, since it is precisely half of the elements of $S_5$ which has $5! = 120$ elements (where the exclamation mark is the [-factorial] function).\n\n# Table\n\n$$\\begin{array}{|c|c|c|c|}\n\\hline\n\\text{Representative}& \\text{Size of class} & \\text{Cycle type} & \\text{Order of element} \\\\ \\hline\n(12345) & 12 & 5 & 5 \\\\ \\hline\n(21345) & 12 & 5 & 5 \\\\ \\hline\n(123) & 20 & 3,1,1 & 3 \\\\ \\hline\n(12)(34) & 15 & 2,2,1 & 2 \\\\ \\hline\ne & 1 & 1,1,1,1,1 & 1 \\\\ \\hline\n\\end{array}$$\n\n# Working\n\nFirstly, the identity is in a class of its own, because $\\tau e \\tau^{-1} = \\tau \\tau^{-1} = e$ for every $\\tau$. \n\nNow, by the same reasoning as in [4bh the proof] that conjugate elements must have the same cycle type in $S_n$, that result also holds in $A_n$.\n\nHence we just need to see whether any of the cycle types comprise more than one conjugacy class.\n\nRecall that the available cycle types are $(5)$, $(3,1,1)$, $(2,2,1)$, $(1,1,1,1,1)$ (the last of which is the identity and we have already considered it).\n\n## Double-transpositions\n\nAll the double-transpositions are conjugate (so the $(2,2,1)$ cycle type does not split):\n\n- $(ab)(cd)$ is conjugate to $(ab)(ce)$ if we conjugate by $(ab)(de)$; symmetrically this covers all the cases where one of the two transpositions remains the same.\n- $(ab)(cd)$ is conjugate to $(ac)(bd)$ by $(cba)$; this covers the case that $e$ is not introduced.\n- $(ab)(cd)$ is conjugate to $(ac)(be)$ by $(bc)(de)$; this covers the remaining cases that $e$ is introduced and neither of the two transpositions remains the same.\n\n## Three-cycles\n\nAll the three-cycles are conjugate (so the $(3,1,1)$ cycle type does not split): \n\n- $(abc)$ is conjugate to $(acb)$ by $(bc)(de)$, so three-cycles are conjugate to their permutations.\n- $(abc)$ is conjugate to $(abd)$ by $(cde)$; this covers the case of introducing a single new element to the cycle.\n- $(abc)$ is conjugate to $(ade)$ by $(bd)(ce)$; this covers the case of introducing two new elements to the cycle.\n\n## Five-cycles\n\nThis class does split: I claim that $(12345)$ and $(21345)$ are not conjugate.\n(Once we have this, then the class must split into two chunks, since $\\{ \\rho (12345) \\rho^{-1}: \\rho \\ \\text{even} \\}$ is closed under conjugation in $A_5$, and $\\{ \\rho (12345) \\rho^{-1}: \\rho \\ \\text{odd} \\}$ is closed under conjugation in $A_5$.\nThe first is the conjugacy class of $(12345)$ in $A_5$; the second is the conjugacy class of $(21345) = (12)(12345)(12)^{-1}$.\nThe only question here was whether they were separate conjugacy classes or whether their union was the conjugacy class.)\n\nRecall that $\\tau (12345) \\tau^{-1} = (\\tau(1), \\tau(2), \\tau(3), \\tau(4), \\tau(5))$, so we would need a permutation $\\tau$ such that $\\tau$ sends $1$ to $2$, $2$ to $1$, $3$ to $3$, $4$ to $4$, and $5$ to $5$.\nThe only such permutation is $(12)$, the transposition, but that is not actually a member of $A_5$.\n\nHence in fact $(12345)$ and $(21345)$ are not conjugate.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'alternating_group_five_conjugacy_classes'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4246',
      parentId: 'alternating_group',
      childId: 'conjugacy_classes_alternating_five_simpler',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-18 13:01:04',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4247',
      parentId: 'conjugacy_class',
      childId: 'conjugacy_classes_alternating_five_simpler',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-18 13:01:13',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: 'alternating_group_five_conjugacy_classes',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13911',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-06-18 15:07:47',
      auxPageId: 'work_in_progress_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13909',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-18 15:07:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13908',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-18 15:06:43',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13906',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-18 15:05:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13905',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-18 15:05:10',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13888',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-18 13:18:22',
      auxPageId: 'alternating_group_five_conjugacy_classes',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13890',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-18 13:18:22',
      auxPageId: 'alternating_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13892',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-18 13:18:22',
      auxPageId: 'conjugacy_class',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13894',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-18 13:18:22',
      auxPageId: 'work_in_progress_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13886',
      pageId: 'conjugacy_classes_alternating_five_simpler',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-18 13:18:20',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}