{
localUrl: '../page/every_group_is_quotient_of_free_group.html',
arbitalUrl: 'https://arbital.com/p/every_group_is_quotient_of_free_group',
rawJsonUrl: '../raw/5jb.json',
likeableId: '3199',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'every_group_is_quotient_of_free_group',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Every group is a quotient of a free group',
clickbait: '',
textLength: '1243',
alias: 'every_group_is_quotient_of_free_group',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-07-22 11:38:50',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-07-22 11:38:50',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '29',
text: 'Given a [3gd group] $G$, there is a [-free_group] $F(X)$ on some set $X$, such that $G$ is [49x isomorphic] to some [4tq quotient] of $F(X)$.\n\nThis is an instance of a much more general phenomenon: for a general [monad_category_theory monad] $T: \\mathcal{C} \\to \\mathcal{C}$ where $\\mathcal{C}$ is a category, if $(A, \\alpha)$ is an [eilenberg_moore_category algebra] over $T$, then $\\alpha: TA \\to A$ is a [coequaliser_category_theory coequaliser]. ([algebras_are_coequalisers Proof.])\n\n# Proof\nLet $F(G)$ be the free group on the elements of $G$, in a slight abuse of notation where we use $G$ interchangeably with its [-3gz].\nDefine the [47t homomorphism] $\\theta: F(G) \\to G$ by "multiplying out a word": taking the word $(a_1, a_2, \\dots, a_n)$ to the product $a_1 a_2 \\dots a_n$.\n\nThis is indeed a group homomorphism, because the group operation in $F(G)$ is concatenation and the group operation in $G$ is multiplication: clearly if $w_1 = (a_1, \\dots, a_m)$, $w_2 = (b_1, \\dots, b_n)$ are words, then $$\\theta(w_1 w_2) = \\theta(a_1, \\dots, a_m, b_1, \\dots, b_m) = a_1 \\dots a_m b_1 \\dots b_m = \\theta(w_1) \\theta(w_2)$$\n\nThis immediately expresses $G$ as a quotient of $F(G)$, since [4h7 kernels of homomorphisms are normal subgroups].',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'group_mathematics'
],
commentIds: [],
questionIds: [],
tagIds: [
'math3'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17294',
pageId: 'every_group_is_quotient_of_free_group',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-07-22 11:38:52',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3194',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17295',
pageId: 'every_group_is_quotient_of_free_group',
userId: 'PatrickStevens',
edit: '0',
type: 'newTag',
createdAt: '2016-07-22 11:38:52',
auxPageId: 'math3',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3183',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17292',
pageId: 'every_group_is_quotient_of_free_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-22 11:38:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}