{
localUrl: '../page/freely_reduced_word.html',
arbitalUrl: 'https://arbital.com/p/freely_reduced_word',
rawJsonUrl: '../raw/5jc.json',
likeableId: '3168',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'EricRogstad'
],
pageId: 'freely_reduced_word',
edit: '7',
editSummary: 'trying to make the summary clearer',
prevEdit: '6',
currentEdit: '7',
wasPublished: 'true',
type: 'wiki',
title: 'Freely reduced word',
clickbait: '"Freely reduced" captures the idea of "no cancellation" in a free group.',
textLength: '4709',
alias: 'freely_reduced_word',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricRogstad',
editCreatedAt: '2016-07-25 18:17:10',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-07-22 13:13:58',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '2',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '103',
text: '[todo: make Free Group a parent of this]\n\n[todo: make the summary a bit better]\n[summary: A "word" over a set $X$ is a finite ordered list of elements from $X$ and $X^{-1}$ (where $X^{-1}$ is the set of formal inverses of the elements of $X$), as if we were treating the elements of $X$ and $X^{-1}$ as letters of an alphabet. A "freely reduced" word over $X$ is one which doesn't contain any consecutive cancelling letters such as $x x^{-1}$.]\n\nGiven a [3jz set] $X$, we can make a new set $X^{-1}$ consisting of "formal inverses" of elements of $X$.\nThat is, we create a set of new symbols, one for each element of $X$, which we denote $x^{-1}$; so $$X^{-1} = \\{ x^{-1} \\mid x \\in X \\}$$\n\nBy this stage, we have not given any kind of meaning to these new symbols.\nThough we have named them suggestively as $x^{-1}$ and called them "inverses", they are at this point just objects.\n\nNow, we apply meaning to them, giving them the flavour of group inverses, by taking the [set_union union] $X \\cup X^{-1}$ and making finite "words" out of this combined "alphabet".\n\nA finite word over $X \\cup X^{-1}$ consists of a list of symbols from $X \\cup X^{-1}$.\nFor example, if $X = \\{ 1, 2 \\}$ %%note:Though in general $X$ need not be a set of numbers.%%, then some words are:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $(1)$\n- $(2)$\n- $(2^{-1})$\n- $(1, 2^{-1}, 2, 1, 1, 1, 2^{-1}, 1^{-1}, 1^{-1})$\n\nFor brevity, we usually write a word by just concatenating the "letters" from which it is made:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $1$\n- $2$\n- $2^{-1}$\n- $1 2^{-1} 2 1 1 1 2^{-1} 1^{-1} 1^{-1}$\n\nFor even more brevity, we can group together successive instances of the same letter.\nThis means we could also write the last word as $1 2^{-1} 2 1^3 2^{-1} 1^{-2}$.\n\nNow we come to the definition of a **freely reduced** word: it is a word which has no subsequence $r r^{-1}$ or $r^{-1} r$ for any $r \\in X$.\n\n# Example\n\nIf $X = \\{ a, b, c \\}$, then we might write $X^{-1}$ as $\\{ a^{-1}, b^{-1}, c^{-1} \\}$ (or, indeed, as $\\{ x, y, z \\}$, because there's no meaning inherent in the $a^{-1}$ symbol so we might as well write it as $x$).\n\nThen $X \\cup X^{-1} = \\{ a,b,c, a^{-1}, b^{-1}, c^{-1} \\}$, and some examples of words over $X \\cup X^{-1}$ are:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $a$\n- $aaaa$\n- $b$\n- $b^{-1}$\n- $ab$\n- $ab^{-1}cbb^{-1}c^{-1}$\n- $aa^{-1}aa^{-1}$\n\nOf these, all except the last two are freely reduced.\nHowever, $ab^{-1}cbb^{-1}c^{-1}$ contains the substring $bb^{-1}$, so it is not freely reduced; and $aa^{-1}aa^{-1}$ is not freely reduced (there are several ways to see this: it contains $aa^{-1}$ twice and $a^{-1} a$ once).\n\n%%hidden(Alternative, more opaque, treatment which might help with one aspect):\nThis chunk is designed to get you familiar with the idea that the symbols $a^{-1}$, $b^{-1}$ and so on in $X^{-1}$ don't have any inherent meaning.\n\nIf we had (rather perversely) gone with $\\{ x, y, z \\}$ as the corresponding "inverses" to $\\{ a, b, c \\}$ (in that order), rather than $\\{ a^{-1}, b^{-1}, c^{-1} \\}$ as our "inverses" %%note:Which you should never do. It just makes things harder to read.%%, then the above words would look like:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $a$\n- $aaaa$, which we might also write as $a^4$\n- $b$\n- $y$\n- $ab$\n- $aycbyz$\n- $axax$\n\nFor the same reasons, all but the last two would be freely reduced.\nHowever, $aycbyz$ contains the substring $by$ so it is not freely reduced; and $axax$ is not freely reduced (there are several ways to see this: it contains $ax$ twice and $xa$ once).\n%%\n\n# Why are we interested in this?\n\nWe can use the freely reduced words to construct the [-5kg] on a given set $X$; this group has as its elements the freely reduced words over $X \\cup X^{-1}$, and as its group operation "concatenation followed by free reduction" (that is, removal of pairs $r r^{-1}$ and $r^{-1} r$). %%note:We make this construction properly rigorous, and check that it is indeed a group, on the [5kg] page.%%\nThe notion of "freely reduced" basically tells us that $r r^{-1}$ is the identity for every letter $r \\in X$, as is $r^{-1} r$; this cancellation of inverses is a property we very much want out of a group.\n\nThe free group is (in a certain well-defined sense from [-4c7]%%note:See [free_group_functor_is_left_adjoint_to_forgetful] for the rather advanced reason why.%%) the purest way of making a group containing the elements $X$, but to make it, we need to throw in inverses for every element of $X$, and then make sure the inverses play nicely with the original elements (which we do by free reduction).\nThat is why we need "freely-reducedness".',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'EricRogstad'
],
childIds: [],
parentIds: [
'math'
],
commentIds: [
'5jh'
],
questionIds: [],
tagIds: [
'needs_parent_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '3230',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17496',
pageId: 'freely_reduced_word',
userId: 'EricRogstad',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-25 18:17:10',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'trying to make the summary clearer'
},
{
likeableId: '3225',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17429',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-23 20:06:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17383',
pageId: 'freely_reduced_word',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-23 05:41:21',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3175',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17349',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-22 22:11:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3185',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17307',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-22 13:21:45',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17306',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-22 13:16:20',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17305',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-22 13:15:30',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17304',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-07-22 13:14:00',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3184',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17302',
pageId: 'freely_reduced_word',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-22 13:13:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}