{
  localUrl: '../page/freely_reduced_word.html',
  arbitalUrl: 'https://arbital.com/p/freely_reduced_word',
  rawJsonUrl: '../raw/5jc.json',
  likeableId: '3168',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'EricRogstad'
  ],
  pageId: 'freely_reduced_word',
  edit: '7',
  editSummary: 'trying to make the summary clearer',
  prevEdit: '6',
  currentEdit: '7',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Freely reduced word',
  clickbait: '"Freely reduced" captures the idea of "no cancellation" in a free group.',
  textLength: '4709',
  alias: 'freely_reduced_word',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricRogstad',
  editCreatedAt: '2016-07-25 18:17:10',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-22 13:13:58',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '2',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '103',
  text: '[todo: make Free Group a parent of this]\n\n[todo: make the summary a bit better]\n[summary: A "word" over a set $X$ is a finite ordered list of elements from $X$ and $X^{-1}$ (where $X^{-1}$ is the set of formal inverses of the elements of $X$), as if we were treating the elements of $X$ and $X^{-1}$ as letters of an alphabet. A "freely reduced" word over $X$ is one which doesn't contain any consecutive cancelling letters such as $x x^{-1}$.]\n\nGiven a [3jz set] $X$, we can make a new set $X^{-1}$ consisting of "formal inverses" of elements of $X$.\nThat is, we create a set of new symbols, one for each element of $X$, which we denote $x^{-1}$; so $$X^{-1} = \\{ x^{-1} \\mid x \\in X \\}$$\n\nBy this stage, we have not given any kind of meaning to these new symbols.\nThough we have named them suggestively as $x^{-1}$ and called them "inverses", they are at this point just objects.\n\nNow, we apply meaning to them, giving them the flavour of group inverses, by taking the [set_union union] $X \\cup X^{-1}$ and making finite "words" out of this combined "alphabet".\n\nA finite word over $X \\cup X^{-1}$ consists of a list of symbols from $X \\cup X^{-1}$.\nFor example, if $X = \\{ 1, 2 \\}$ %%note:Though in general $X$ need not be a set of numbers.%%, then some words are:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $(1)$\n- $(2)$\n- $(2^{-1})$\n- $(1, 2^{-1}, 2, 1, 1, 1, 2^{-1}, 1^{-1}, 1^{-1})$\n\nFor brevity, we usually write a word by just concatenating the "letters" from which it is made:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $1$\n- $2$\n- $2^{-1}$\n- $1 2^{-1} 2 1 1 1 2^{-1} 1^{-1} 1^{-1}$\n\nFor even more brevity, we can group together successive instances of the same letter.\nThis means we could also write the last word as $1 2^{-1} 2 1^3 2^{-1} 1^{-2}$.\n\nNow we come to the definition of a **freely reduced** word: it is a word which has no subsequence $r r^{-1}$ or $r^{-1} r$ for any $r \\in X$.\n\n# Example\n\nIf $X = \\{ a, b, c \\}$, then we might write $X^{-1}$ as $\\{ a^{-1}, b^{-1}, c^{-1} \\}$ (or, indeed, as $\\{ x, y, z \\}$, because there's no meaning inherent in the $a^{-1}$ symbol so we might as well write it as $x$).\n\nThen $X \\cup X^{-1} = \\{ a,b,c, a^{-1}, b^{-1}, c^{-1} \\}$, and some examples of words over $X \\cup X^{-1}$ are:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $a$\n- $aaaa$\n- $b$\n- $b^{-1}$\n- $ab$\n- $ab^{-1}cbb^{-1}c^{-1}$\n- $aa^{-1}aa^{-1}$\n\nOf these, all except the last two are freely reduced.\nHowever, $ab^{-1}cbb^{-1}c^{-1}$ contains the substring $bb^{-1}$, so it is not freely reduced; and $aa^{-1}aa^{-1}$ is not freely reduced (there are several ways to see this: it contains $aa^{-1}$ twice and $a^{-1} a$ once).\n\n%%hidden(Alternative, more opaque, treatment which might help with one aspect):\nThis chunk is designed to get you familiar with the idea that the symbols $a^{-1}$, $b^{-1}$ and so on in $X^{-1}$ don't have any inherent meaning.\n\nIf we had (rather perversely) gone with $\\{ x, y, z \\}$ as the corresponding "inverses" to $\\{ a, b, c \\}$ (in that order), rather than $\\{ a^{-1}, b^{-1}, c^{-1} \\}$ as our "inverses" %%note:Which you should never do. It just makes things harder to read.%%, then the above words would look like:\n\n- The empty word, which we commonly denote $\\varepsilon$\n- $a$\n- $aaaa$, which we might also write as $a^4$\n- $b$\n- $y$\n- $ab$\n- $aycbyz$\n- $axax$\n\nFor the same reasons, all but the last two would be freely reduced.\nHowever, $aycbyz$ contains the substring $by$ so it is not freely reduced; and $axax$ is not freely reduced (there are several ways to see this: it contains $ax$ twice and $xa$ once).\n%%\n\n# Why are we interested in this?\n\nWe can use the freely reduced words to construct the [-5kg] on a given set $X$; this group has as its elements the freely reduced words over $X \\cup X^{-1}$, and as its group operation "concatenation followed by free reduction" (that is, removal of pairs $r r^{-1}$ and $r^{-1} r$). %%note:We make this construction properly rigorous, and check that it is indeed a group, on the [5kg] page.%%\nThe notion of "freely reduced" basically tells us that $r r^{-1}$ is the identity for every letter $r \\in X$, as is $r^{-1} r$; this cancellation of inverses is a property we very much want out of a group.\n\nThe free group is (in a certain well-defined sense from [-4c7]%%note:See [free_group_functor_is_left_adjoint_to_forgetful] for the rather advanced reason why.%%) the purest way of making a group containing the elements $X$, but to make it, we need to throw in inverses for every element of $X$, and then make sure the inverses play nicely with the original elements (which we do by free reduction).\nThat is why we need "freely-reducedness".',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricRogstad'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [
    '5jh'
  ],
  questionIds: [],
  tagIds: [
    'needs_parent_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '3230',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17496',
      pageId: 'freely_reduced_word',
      userId: 'EricRogstad',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-07-25 18:17:10',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'trying to make the summary clearer'
    },
    {
      likeableId: '3225',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17429',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-23 20:06:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17383',
      pageId: 'freely_reduced_word',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-23 05:41:21',
      auxPageId: 'needs_parent_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3175',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17349',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-22 22:11:14',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3185',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17307',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-22 13:21:45',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17306',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-22 13:16:20',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17305',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-22 13:15:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17304',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-22 13:14:00',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3184',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17302',
      pageId: 'freely_reduced_word',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-22 13:13:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}