{
  localUrl: '../page/gen_elt.html',
  arbitalUrl: 'https://arbital.com/p/gen_elt',
  rawJsonUrl: '../raw/61q.json',
  likeableId: '3582',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'KevinClancy'
  ],
  pageId: 'gen_elt',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Generalized element',
  clickbait: 'A category-theoretic generalization of the notion of element of a set.',
  textLength: '3695',
  alias: 'gen_elt',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DylanHendrickson',
  editCreatedAt: '2016-10-07 17:59:07',
  pageCreatorId: 'LukeSciarappa',
  pageCreatedAt: '2016-08-31 04:42:05',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '6',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '43',
  text: 'In [-4c7], a **generalized element** of an object $X$ of a category is any morphism $x : A \\to X$ with [3lg codomain] $X$. In this situation, $A$ is called the **shape**, or **domain of definition**, of the element $x$. We'll unpack this.\n\n## Generalized elements generalize elements ##\n We'll need a set with a single element: for concreteness, let us denote it $I$, and say that its single element is $*$. That is, let $I = \\{*\\}$.\n For a given set $X$, there is a natural correspondence between the following notions: an element of $X$, and a function from the set $I$ to the set $X$. On the one hand, if you have an element $x$ of $X$, you can define a function from $I$ to $X$ by setting $f(i) = x$ for any $i \\in I$; that is, by taking $f$ to be the constant function with value $x$. On the other hand, if you have a function $f : I \\to X$, then since $*$ is an element of $I$, $f(*)$ is an element of $X$. So in the category of sets, generalized elements of a set $X$ that have shape $I$, which are by definition maps $I \\to X$, are the same thing (at least up to isomorphism, which as usual is all we care about).\n\n## Generalized elements in sets ##\n In the category of sets, if a set $A$ has $n$ elements, a generalized element of shape $A$ of a set $X$ is an $n$-tuple of elements of $X$. \n[todo: is there more to say here? or less?]\n\n## Sometimes there is no `best shape' ##\nBased on the case of sets, you might initially think that it suffices to consider generalized elements whose shape is the terminal object [todo: add link] $1$. However, in the category of groups, since the terminal object is also initial [todo: explain this somewhere], each object has a unique generalized element of shape $1$. However, in this case, there is a single shape that suffices, namely the integers $\\mathbb{Z}$. A generalized element of shape $\\mathbb{Z}$ of an abelian group $A$ is just an ordinary element of $A$. \n\nHowever, sometimes there is no single object whose generalized elements can distinguish everything up to isomorphism. For example, consider $\\text{Set} \\times \\text{Set}$ [todo: link to a page about the product of two categories]. If we use generalized elements of shape $(X,Y)$, then they won't be able to distinguish between the objects $(2^A, 2^{X + B})$ and $(2^{Y + A}, 2^{B})$, up to isomorphism, since maps from $(X,Y)$ into the first are the same as elements of $(2^A)^X\\times(2^{X+B})^Y \\cong 2^{X\\times A + Y \\times (X + B)} \\cong 2^{X \\times A + Y \\times B + X \\times Y}$, and maps from $(X,Y)$ into the second are the same as elements of $(2^{Y+A})^X \\times (2^B)^Y \\cong 2^{X\\times(Y+A) + Y \\times B} \\cong 2^{X \\times A + Y \\times B + X \\times Y}$. These objects will themselves be non-isomorphic as long as at least one of $X$ and $Y$ is not the empty set; if both are, then clearly the functor still fails to distinguish objects up to isomorphism. (More technically, it does not reflect isomorphisms. [todo: explain or avoid this terminology])\nIntuitively, because objects of this category contain the data of two sets, the information cannot be captured by a single homset. This intuition is consistent with the fact that it can be captured with two: the generalized elements of shapes $(0,1)$ and $(1,0)$ together determine every object up to isomorphism.\n\n## Morphisms are functions on generalized elements ##\n If $x$ is an $A$-shaped element of $X$, and $f$ is a morphism from $X$ to $Y$, then $f(x) := f\\circ x$ is an $A$-shaped element of $Y$. The Yoneda lemma [todo: create Yoneda lemma page] states that every function on generalized elements which commutes with reparameterization, i.e. $f(xu) = f(x) u$, is actually given by a morphism in the category.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'LukeSciarappa',
    'DylanHendrickson'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '6364',
      parentId: 'set_mathematics',
      childId: 'gen_elt',
      type: 'requirement',
      creatorId: 'LukeSciarappa',
      createdAt: '2016-08-31 04:24:24',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '6365',
      parentId: 'function',
      childId: 'gen_elt',
      type: 'requirement',
      creatorId: 'LukeSciarappa',
      createdAt: '2016-08-31 04:24:36',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '6366',
      parentId: 'category_mathematics',
      childId: 'gen_elt',
      type: 'requirement',
      creatorId: 'LukeSciarappa',
      createdAt: '2016-08-31 04:24:44',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19887',
      pageId: 'gen_elt',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-10-07 18:57:53',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19885',
      pageId: 'gen_elt',
      userId: 'DylanHendrickson',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-10-07 17:59:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19876',
      pageId: 'gen_elt',
      userId: 'LukeSciarappa',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-10-07 03:40:11',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19419',
      pageId: 'gen_elt',
      userId: 'LukeSciarappa',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-31 04:42:07',
      auxPageId: 'set_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19420',
      pageId: 'gen_elt',
      userId: 'LukeSciarappa',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-31 04:42:07',
      auxPageId: 'function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19421',
      pageId: 'gen_elt',
      userId: 'LukeSciarappa',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-31 04:42:07',
      auxPageId: 'category_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3483',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19418',
      pageId: 'gen_elt',
      userId: 'LukeSciarappa',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-08-31 04:42:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}