{
  localUrl: '../page/group_conjugate.html',
  arbitalUrl: 'https://arbital.com/p/group_conjugate',
  rawJsonUrl: '../raw/4gk.json',
  likeableId: '2724',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'group_conjugate',
  edit: '6',
  editSummary: '',
  prevEdit: '5',
  currentEdit: '6',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group conjugate',
  clickbait: 'Conjugation lets us perform permutations "from the point of view of" another permutation.',
  textLength: '2674',
  alias: 'group_conjugate',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-20 09:05:54',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-16 20:48:36',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '59',
  text: 'Two elements $x, y$ of a [-3gd] $G$ are *conjugate* if there is some $h \\in G$ such that $hxh^{-1} = y$.\n\n# Conjugacy as "changing the worldview"\n\nConjugating by $h$ is equivalent to "viewing the world through $h$'s eyes".\nThis is most easily demonstrated in the [-497], where it [4bh is a fact] that if $$\\sigma = (a_{11} a_{12} \\dots a_{1 n_1})(a_{21} \\dots a_{2 n_2}) \\dots (a_{k 1} a_{k 2} \\dots a_{k n_k})$$\nand $\\tau \\in S_n$, then $$\\tau \\sigma \\tau^{-1} = (\\tau(a_{11}) \\tau(a_{12}) \\dots \\tau(a_{1 n_1}))(\\tau(a_{21}) \\dots \\tau(a_{2 n_2})) \\dots (\\tau(a_{k 1}) \\tau(a_{k 2}) \\dots \\tau(a_{k n_k}))$$\n\nThat is, conjugating by $\\tau$ has "caused us to view $\\sigma$ from the point of view of $\\tau$".\n\nSimilarly, in the [-4cy] $D_{2n}$ on $n$ vertices, conjugation of the rotation by a reflection yields the inverse of the rotation: it is "the rotation, but viewed as acting on the reflected polygon".\nEquivalently, if the polygon is sitting on a glass table, conjugating the rotation by a reflection makes the rotation act "as if we had moved our head under the table to look upwards first".\n\nIn general, if $G$ is a group which [3t9 acts] as (some of) the symmetries of a certain object $X$ %%note:Which [49b we can always view as being the case].%% then conjugation of $g \\in G$ by $h \\in G$ produces a symmetry $hgh^{-1}$ which acts in the same way as $g$ does, but on a copy of $X$ which has already been permuted by $h$.\n\n# Closure under conjugation\n\nIf a subgroup $H$ of $G$ is closed under conjugation by elements of $G$, then $H$ is a [-4h6].\nThe concept of a normal subgroup is extremely important in group theory.\n\n%%%knows-requisite([3t9]):\n# Conjugation action\n\nConjugation forms a [3t9 action].\nFormally, let $G$ act on itself: $\\rho: G \\times G \\to G$, with $\\rho(g, k) = g k g^{-1}$.\nIt is an exercise to show that this is indeed an action.\n%%hidden(Show solution):\nWe need to show that the identity acts trivially, and that products may be broken up to act individually.\n\n- $\\rho(gh, k) = (gh)k(gh)^{-1} = ghkh^{-1}g^{-1} = g \\rho(h, k) g^{-1} = \\rho(g, \\rho(h, k))$;\n- $\\rho(e, k) = eke^{-1} = k$.\n%%\n\nThe [group_stabiliser stabiliser] of this action, $\\mathrm{Stab}_G(g)$ for some fixed $g \\in G$, is the set of all elements such that $kgk^{-1} = g$: that is, such that $kg = gk$.\nEquivalently, it is the [group_centraliser centraliser] of $g$ in $G$: it is the subgroup of all elements which commute with $G$.\n\nThe [group_orbit orbit] of the action, $\\mathrm{Orb}_G(g)$ for some fixed $g \\in G$, is the [-4bj] of $g$ in $G$.\nBy the [-4l8], this immediately gives that the size of a conjugacy class divides the [3gg order] of the parent group.\n%%%',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'math2'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18988',
      pageId: 'group_conjugate',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-20 13:11:24',
      auxPageId: 'math2',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18987',
      pageId: 'group_conjugate',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-08-20 13:10:51',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18985',
      pageId: 'group_conjugate',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-20 13:10:48',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14092',
      pageId: 'group_conjugate',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-20 09:05:54',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13538',
      pageId: 'group_conjugate',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-17 15:16:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13467',
      pageId: 'group_conjugate',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 10:27:44',
      auxPageId: 'normal_subgroup',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2728',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '13392',
      pageId: 'group_conjugate',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newParent',
      createdAt: '2016-06-16 21:02:20',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13389',
      pageId: 'group_conjugate',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-16 20:51:34',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13388',
      pageId: 'group_conjugate',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-16 20:49:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13385',
      pageId: 'group_conjugate',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-16 20:48:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}