{
localUrl: '../page/group_coset.html',
arbitalUrl: 'https://arbital.com/p/group_coset',
rawJsonUrl: '../raw/4j4.json',
likeableId: '2754',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'group_coset',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Group coset',
clickbait: '',
textLength: '1874',
alias: 'group_coset',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-17 17:58:15',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-17 17:58:15',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '2',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '41',
text: 'Given a subgroup $H$ of [-3gd] $G$, the *left cosets* of $H$ in $G$ are sets of the form $\\{ gh : h \\in H \\}$, for some $g \\in G$.\nThis is written $gH$ as a shorthand.\n\nSimilarly, the *right cosets* are the sets of the form $Hg = \\{ hg: h \\in H \\}$.\n\n# Examples\n%%%knows-requisite([497]):\n## Symmetric group\n\nIn $S_3$, the [-497] on three elements, we can list the elements as $\\{ e, (123), (132), (12), (13), (23) \\}$, using [49f cycle notation].\nDefine $A_3$ (which happens to have a name: the [-4hf]) to be the subgroup with elements $\\{ e, (123), (132) \\}$.\n\nThen the coset $(12) A_3$ has elements $\\{ (12), (12)(123), (12)(132) \\}$, which is simplified to $\\{ (12), (23), (13) \\}$.\n\nThe coset $(123)A_3$ is simply $A_3$, because $A_3$ is a subgroup so is closed under the group operation. $(123)$ is already in $A_3$.\n%%%\n\n[todo: more examples, with different requirements]\n\n# Properties\n\n- The left cosets of $H$ in $G$ [set_partition partition] $G$. ([4j5 Proof.])\n- For any pair of left cosets of $H$, there is a [499 bijection] between them; that is, all the cosets are all the same size. ([4j8 Proof.])\n\n# Why are we interested in cosets?\n\nUnder certain conditions (namely that the subgroup $H$ must be [4h6 normal]), we may define the [-quotient_group], a very important concept; see the page on [4j5 "left cosets partition the parent group"] for a glance at why this is useful.\n[todo: there must be a less clumsy way to do it]\n\nAdditionally, there is a key theorem whose usual proof considers cosets ([lagrange_theorem_on_subgroup_size Lagrange's theorem]) which strongly restricts the possible sizes of subgroups of $G$, and which itself is enough to classify all the groups of [3gg order] $p$ for $p$ [prime_number prime].\nLagrange's theorem also has very common applications in [-number_theory], in the form of the [fermat_euler_theorem Fermat-Euler theorem].',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [
'left_cosets_partition_parent_group',
'left_cosets_biject'
],
parentIds: [
'group_mathematics'
],
commentIds: [],
questionIds: [],
tagIds: [
'formal_definition_meta_tag',
'needs_clickbait_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17120',
pageId: 'group_coset',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-19 02:02:53',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17118',
pageId: 'group_coset',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-19 02:02:52',
auxPageId: 'formal_definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17117',
pageId: 'group_coset',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-19 02:02:45',
auxPageId: 'needs_clickbait_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13710',
pageId: 'group_coset',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequiredBy',
createdAt: '2016-06-17 21:24:38',
auxPageId: 'lagrange_theorem_on_subgroup_size',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13621',
pageId: 'group_coset',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequiredBy',
createdAt: '2016-06-17 18:03:28',
auxPageId: 'left_cosets_partition_parent_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13619',
pageId: 'group_coset',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-17 17:58:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13590',
pageId: 'group_coset',
userId: 'PatrickStevens',
edit: '1',
type: 'newTag',
createdAt: '2016-06-17 17:19:09',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13589',
pageId: 'group_coset',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-17 17:19:05',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}