{
  localUrl: '../page/group_orbits_partition.html',
  arbitalUrl: 'https://arbital.com/p/group_orbits_partition',
  rawJsonUrl: '../raw/4mg.json',
  likeableId: '2778',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'group_orbits_partition',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group orbits partition',
  clickbait: 'When a group acts on a set, the set falls naturally into distinct pieces, where the group action only permutes elements within any given piece, not between them.',
  textLength: '1054',
  alias: 'group_orbits_partition',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-20 08:55:28',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-20 08:55:28',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '32',
  text: 'Let $G$ be a [-3gd], [3t9 acting] on the set $X$.\nThen the [group_orbit orbits] of $X$ under $G$ form a [set_partition partition] of $X$.\n\n# Proof\n\nWe need to show that every element of $X$ is in an orbit, and that if $x \\in X$ lies in two orbits then they are the same orbit.\n\nCertainly $x \\in X$ lies in an orbit: it lies in the orbit $\\mathrm{Orb}_G(x)$, since $e(x) = x$ where $e$ is the identity of $G$.\n(This follows by the definition of an action.)\n\nSuppose $x$ lies in both $\\mathrm{Orb}_G(a)$ and $\\mathrm{Orb}_G(b)$, where $a, b \\in X$.\nThen $g(a) = h(b) = x$ for some $g, h \\in G$.\nThis tells us that $h^{-1}g(a) = b$, so in fact $\\mathrm{Orb}_G(a) = \\mathrm{Orb}_G(b)$; it is an exercise to prove this formally.\n\n%%hidden(Show solution):\nIndeed, if $r \\in \\mathrm{Orb}_G(b)$, then $r = k(b)$, say, some $k \\in G$.\nThen $r = k(h^{-1}g(a)) = kh^{-1}g(a)$, so $r \\in \\mathrm{Orb}_G(a)$.\n\nConversely, if $r \\in \\mathrm{Orb}_G(a)$, then $r = m(b)$, say, some $m \\in G$.\nThen $r = m(g^{-1}h(b)) = m g^{-1} h (b)$, so $r \\in \\mathrm{Orb}_G(b)$.\n%%\n\n',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'group_action'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15161',
      pageId: 'group_orbits_partition',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-03 08:10:12',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14088',
      pageId: 'group_orbits_partition',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-20 08:55:30',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14086',
      pageId: 'group_orbits_partition',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-20 08:55:28',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}