{
localUrl: '../page/group_theory_examples.html',
arbitalUrl: 'https://arbital.com/p/group_theory_examples',
rawJsonUrl: '../raw/3t6.json',
likeableId: '2546',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricRogstad'
],
pageId: 'group_theory_examples',
edit: '15',
editSummary: '',
prevEdit: '14',
currentEdit: '15',
wasPublished: 'true',
type: 'wiki',
title: 'Group theory: Examples',
clickbait: 'What does thinking in terms of group theory actually look like? And what does it buy you? ',
textLength: '2679',
alias: 'group_theory_examples',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'QiaochuYuan',
editCreatedAt: '2016-05-25 22:34:31',
pageCreatorId: 'QiaochuYuan',
pageCreatedAt: '2016-05-25 21:08:44',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '101',
text: '# Even and odd functions\n\nRecall that a function $f : \\mathbb{R} \\to \\mathbb{R}$ is [even_function even] if $f(-x) = f(x)$, and [odd_function odd] if $f(-x) = - f(x)$. A typical example of an even function is $f(x) = x^2$ or $f(x) = \\cos x$, while a typical example of an odd function is $f(x) = x^3$ or $f(x) = \\sin x$. \n\nWe can think about evenness and oddness in terms of [3g8 group theory] as follows. There is a group called the [cyclic_group cyclic group] $C_2$ of [3gg order] $2$ acting on the set of functions $\\mathbb{R} \\to \\mathbb{R}$: in other words, each element of the group describes a function of [3sz type]\n\n$$ (\\mathbb{R} \\to \\mathbb{R}) \\to (\\mathbb{R} \\to \\mathbb{R}) $$\n\nmeaning that it takes as input a function $\\mathbb{R} \\to \\mathbb{R}$ and returns as output another function $\\mathbb{R} \\to \\mathbb{R}$.\n\n$C_2$ has two elements which we'll call $1$ and $-1$. $1$ is the identity element: it acts on functions by sending a function $f(x)$ to the same function $f(x)$ again. $-1$ sends a function $f(x)$ to the function $f(-x)$, which visually corresponds to reflecting the graph of $f(x)$ through the y-axis. The group multiplication is what the names of the group elements suggests, and in particular $(-1) \\times (-1) = 1$, which corresponds to the fact that $f(-(-x)) = f(x)$. \n\nAny time a group $G$ [3t9 acts] on a set $X$, it's interesting to ask what elements are [invariant_under_a_group_action invariant] under that group action. Here the invariants of functions under the action of $C_2$ above are the even functions, and they form a [subspace] of the [vector_space vector space] of all functions. \n\nIt turns out that every function is uniquely the sum of an even and an odd function, as follows:\n\n$$f(x) = \\underbrace{\\frac{f(x) + f(-x)}{2}}_{\\text{even}} + \\underbrace{\\frac{f(x) - f(-x)}{2}}_{\\text{odd}}.$$\n\nThis is a special case of various more general facts in [3tn representation theory], and in particular can be thought of as the simplest case of the [discrete_Fourier_transform discrete Fourier transform], which in turn is a [mathematical_toy_model toy model] of the theory of [Fourier_series Fourier series] and the [Fourier_transform Fourier transform]. \n\nIt's also interesting to observe that the cyclic group $C_2$ shows up in lots of other places in mathematics as well. For example, it is also the group describing how even and odd numbers add<sup>1</sup> (where even corresponds to $1$ and odd corresponds to $-1$); this is the simplest case of [modular_arithmetic modular arithmetic]. \n\n<sup>1</sup><sub>That is: an even plus an even make an even, an odd plus an odd make an even, and an even plus an odd make an odd.</sub>',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'QiaochuYuan',
'EricRogstad'
],
childIds: [],
parentIds: [
'group_theory'
],
commentIds: [
'3td'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: 'group_theory',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '1',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11050',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '15',
type: 'newEdit',
createdAt: '2016-05-25 22:34:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11045',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '14',
type: 'newEdit',
createdAt: '2016-05-25 22:33:38',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11032',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '13',
type: 'newEdit',
createdAt: '2016-05-25 22:20:37',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11030',
pageId: 'group_theory_examples',
userId: 'EricRogstad',
edit: '12',
type: 'newEdit',
createdAt: '2016-05-25 22:14:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11029',
pageId: 'group_theory_examples',
userId: 'EricRogstad',
edit: '11',
type: 'newEdit',
createdAt: '2016-05-25 22:13:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11028',
pageId: 'group_theory_examples',
userId: 'EricRogstad',
edit: '10',
type: 'newEdit',
createdAt: '2016-05-25 22:10:40',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11027',
pageId: 'group_theory_examples',
userId: 'EricRogstad',
edit: '9',
type: 'newEdit',
createdAt: '2016-05-25 22:10:01',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11018',
pageId: 'group_theory_examples',
userId: 'EricRogstad',
edit: '6',
type: 'newEdit',
createdAt: '2016-05-25 22:05:46',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10997',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '5',
type: 'newEdit',
createdAt: '2016-05-25 21:50:52',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10958',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '4',
type: 'newEdit',
createdAt: '2016-05-25 21:11:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10957',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '3',
type: 'newEdit',
createdAt: '2016-05-25 21:10:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10956',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '2',
type: 'newEdit',
createdAt: '2016-05-25 21:09:39',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10953',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '1',
type: 'newEdit',
createdAt: '2016-05-25 21:08:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10948',
pageId: 'group_theory_examples',
userId: 'QiaochuYuan',
edit: '1',
type: 'newParent',
createdAt: '2016-05-25 21:06:21',
auxPageId: 'group_theory',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}