{ localUrl: '../page/irreducibles_are_prime_in_integers.html', arbitalUrl: 'https://arbital.com/p/irreducibles_are_prime_in_integers', rawJsonUrl: '../raw/5mh.json', likeableId: '3245', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'JaimeSevillaMolina' ], pageId: 'irreducibles_are_prime_in_integers', edit: '5', editSummary: '', prevEdit: '4', currentEdit: '5', wasPublished: 'true', type: 'wiki', title: 'Euclid's Lemma on prime numbers', clickbait: 'A very basic but vitally important property of the prime numbers is that they "can't be split between factors": if a prime divides a product then it must divide one of the individual factors.', textLength: '3047', alias: 'irreducibles_are_prime_in_integers', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-08-07 14:53:46', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-07-28 15:39:06', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '61', text: '[summary: The [4mf prime numbers] have a special property that they "can't be distributed between terms of a product": if $p$ is a prime dividing a product $ab$ of [48l integers], then $p$ wholly divides one or both of $a$ or $b$. It cannot be the case that "some but not all of $p$ divides into $a$, and the rest of $p$ divides into $b$".]\n\n[summary(Technical): Let $p$ be a [4mf prime] natural number. Then $p \\mid ab$ implies $p \\mid a$ or $p \\mid b$.]\n\nEuclid's lemma states that if $p$ is a [4mf prime number], which divides a product $ab$, then $p$ divides at least one of $a$ or $b$.\n\n# Proof\n\n## Elementary proof\n\nSuppose $p \\mid ab$ %%note:That is, $p$ divides $ab$.%%, but $p$ does not divide $a$.\nWe will show that $p \\mid b$.\n\nIndeed, $p$ does not divide $a$, so the [-5mw] of $p$ and $a$ is $1$ (exercise: do this without using integer factorisation); so by [bezouts_theorem Bézout's theorem] there are integers $x, y$ such that $ax+py = 1$.\n\n%%hidden(Show solution to exercise):\nWe are not allowed to use the fact that we can factorise integers, because we need "$p \\mid ab$ implies $p \\mid a$ or $p \\mid b$" as a lemma on the way towards the proof of the [-5rh] (which is the theorem that tells us we can factorise integers).\n\nRecall that the highest common factor of $a$ and $p$ is defined to be the number $c$ such that:\n\n- $c \\mid a$;\n- $c \\mid p$;\n- for any $d$ which divides $a$ and $p$, we have $d \\mid c$.\n\n[euclidean_algorithm Euclid's algorithm] tells us that $a$ and $p$ do have a (unique) highest common factor.\n\nNow, if $c \\mid p$, we have that $c = p$ or $c=1$, because $p$ is [4mf prime].\nBut $c$ is not $p$ because we also know that $c \\mid a$, and we already know $p$ does not divide $a$.\n\nHence $c = 1$.\n%%\n\nBut multiplying through by $b$, we see $abx + pby = b$.\n$p$ divides $ab$ and divides $p$, so it divides the left-hand side; hence it must divide the right-hand side too.\nThat is, $p \\mid b$.\n\n## More abstract proof\n\nThis proof uses much more theory but is correspondingly much more general, and it reveals the important feature of $\\mathbb{Z}$ here.\n\n$\\mathbb{Z}$, viewed as a [3gq ring], is a [-5r5]. ([integers_is_pid Proof.])\nThe theorem we are trying to prove is that the [5m1 irreducibles] in $\\mathbb{Z}$ are all [5m2 prime] in the sense of ring theory.\n\nBut it is generally true that in a PID, "prime" and "irreducible" coincide ([5mf proof]), so the result is immediate.\n\n# Converse is false\n\nAny composite number $pq$ (where $p, q$ are greater than $1$) divides $pq$ without dividing $p$ or $q$, so the converse is very false.\n\n# Why is this important?\n\nThis lemma is a nontrivial step on the way to proving the [-5rh]; and in fact in a certain general sense, if we can prove this lemma then we can prove the FTA.\nIt tells us about the behaviour of the primes with respect to products: we now know that the primes "cannot be split up between factors" of a product, and so they behave, in a sense, [5m1 "irreducibly"].\n\nThe lemma is also of considerable use as a tiny step in many different proofs.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'math' ], commentIds: [ '5mm' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18536', pageId: 'irreducibles_are_prime_in_integers', userId: 'PatrickStevens', edit: '5', type: 'newEdit', createdAt: '2016-08-07 14:53:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18217', pageId: 'irreducibles_are_prime_in_integers', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-08-03 16:07:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3325', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '18216', pageId: 'irreducibles_are_prime_in_integers', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-08-03 16:06:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17666', pageId: 'irreducibles_are_prime_in_integers', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-07-28 16:56:27', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17648', pageId: 'irreducibles_are_prime_in_integers', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-07-28 15:39:07', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17646', pageId: 'irreducibles_are_prime_in_integers', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-07-28 15:39:06', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }