{
  localUrl: '../page/isomorphism.html',
  arbitalUrl: 'https://arbital.com/p/isomorphism',
  rawJsonUrl: '../raw/4f4.json',
  likeableId: '2715',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '5',
  dislikeCount: '0',
  likeScore: '5',
  individualLikes: [
    'EricBruylant',
    'TravisRivera',
    'JaimeSevillaMolina',
    'MarkChimes',
    'CharlieRaffaele'
  ],
  pageId: 'isomorphism',
  edit: '21',
  editSummary: '',
  prevEdit: '20',
  currentEdit: '21',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Isomorphism',
  clickbait: 'A morphism between two objects which describes how they are "essentially equivalent" for the purposes of the theory under consideration.',
  textLength: '2011',
  alias: 'isomorphism',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DanielSatanove',
  editCreatedAt: '2016-10-21 00:07:16',
  pageCreatorId: 'MarkChimes',
  pageCreatedAt: '2016-06-16 04:02:52',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'true',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '2300',
  text: 'A pair of mathematical structures are **isomorphic** to each other if they are "essentially the same", even if they aren't necessarily equal. \n\nAn **isomorphism** is a [-4d8] between isomorphic structures which translates one to the other in a way that preserves all the relevant structure. An important property of an isomorphism is that it can be 'undone' by its [-4sn inverse] isomorphism. \n\nAn isomorphism from an object to itself is called an **[automorphism automorphism]**. They can be thought of as symmetries: different ways in which an object can be mapped onto itself without changing it.\n\n##Equality and Identity##\nThe simplest isomorphism is equality: if two things are equal then they are actually the same thing (and so not actually *two* things at all). Anything is obviously indistinguishable from itself under whatever measure you might use (it has any property in common with itself) and so regardless of the theory or language, anything is isomorphic to itself. This is represented by the [-identity_function identity] (iso)morphism.\n\n%%%knows-requisite([3gd]):\n##[49x Group Isomorphisms]##\nFor a more technical example, the theory of groups only talks about the way that elements are combined via group operation. The theory does not care in what order elements are put, or what they are labelled or even what they are. Hence, if you are using the language and theory of groups, you want to say two groups are essentially indistinguishable if you can pair up the elements such that their group operations act the same way.\n%%%\n\n##Isomorphisms in Category Theory##\nIn [-4c7 category theory], an isomorphism is a morphism which has a two-sided [-4sn]. That is to say, $f:A \\to B$ is an isomorphism if there is a morphism $g: B \\to A$ where $f$ and $g$ cancel each other out.\n\nFormally, this means that both composites $fg$ and $gf$ are equal to identity morphisms (morphisms which 'do nothing' or declare an object equal to itself). That is, $gf = \\mathrm {id}_A$ and $fg = \\mathrm {id}_B$.\n ',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'A pair of mathematical structures are **isomorphic** to each other if they are "essentially the same", even if they aren't necessarily equal.'
  },
  creatorIds: [
    'MarkChimes',
    'PatrickStevens',
    'EricBruylant',
    'DylanHendrickson',
    'EricRogstad',
    'DanielSatanove'
  ],
  childIds: [
    'group_isomorphism',
    'Isomorphism_intro_math_0',
    'up_to_isomorphism'
  ],
  parentIds: [
    'math'
  ],
  commentIds: [
    '4fg',
    '4fs',
    '4g6',
    '4gc',
    '4gd'
  ],
  questionIds: [],
  tagIds: [
    'group_isomorphism',
    'category_theory',
    'morphism',
    'needs_exercises_meta_tag',
    'c_class_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [
    {
      id: '4031',
      parentId: 'isomorphism',
      childId: 'isomorphism',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '5195',
      parentId: 'isomorphism',
      childId: 'Isomorphism_intro_math_0',
      type: 'subject',
      creatorId: 'MarkChimes',
      createdAt: '2016-07-12 19:57:58',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  requirements: [
    {
      id: '4027',
      parentId: 'math0',
      childId: 'isomorphism',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '4031',
      parentId: 'isomorphism',
      childId: 'isomorphism',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  lenses: [
    {
      id: '45',
      pageId: 'isomorphism',
      lensId: 'Isomorphism_intro_math_0',
      lensIndex: '0',
      lensName: 'Intro (Math 0)',
      lensSubtitle: '',
      createdBy: '1',
      createdAt: '2016-06-17 21:58:56',
      updatedBy: '1',
      updatedAt: '2016-06-17 21:58:56'
    }
  ],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {
    '4f4': [
      '4hj'
    ]
  },
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '3660',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '20196',
      pageId: 'isomorphism',
      userId: 'DanielSatanove',
      edit: '21',
      type: 'newEdit',
      createdAt: '2016-10-21 00:07:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19698',
      pageId: 'isomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-09-24 08:55:36',
      auxPageId: 'up_to_isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18996',
      pageId: 'isomorphism',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-20 13:13:45',
      auxPageId: 'group_isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16603',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-07-12 19:57:58',
      auxPageId: 'Isomorphism_intro_math_0',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16261',
      pageId: 'isomorphism',
      userId: 'EricRogstad',
      edit: '20',
      type: 'newEdit',
      createdAt: '2016-07-08 21:07:23',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'inverse function isomorphism -> inverse isomorphism'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16156',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-08 11:01:32',
      auxPageId: 'needs_image_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16154',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-08 10:59:37',
      auxPageId: 'needs_exercises_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16147',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-08 10:56:46',
      auxPageId: '4v4',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16146',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-08 10:56:36',
      auxPageId: 'needs_image_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16145',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-08 10:56:22',
      auxPageId: 'c_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16014',
      pageId: 'isomorphism',
      userId: 'DylanHendrickson',
      edit: '19',
      type: 'newEdit',
      createdAt: '2016-07-07 17:31:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2734',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '13565',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '17',
      type: 'newEdit',
      createdAt: '2016-06-17 16:31:28',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13505',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '14',
      type: 'newChild',
      createdAt: '2016-06-17 14:02:36',
      auxPageId: 'Isomorphism_intro_math_0',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13442',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '14',
      type: 'newEdit',
      createdAt: '2016-06-17 06:41:25',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2735',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '13435',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-06-17 06:22:20',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13347',
      pageId: 'isomorphism',
      userId: 'EricBruylant',
      edit: '11',
      type: 'newParent',
      createdAt: '2016-06-16 18:00:55',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13345',
      pageId: 'isomorphism',
      userId: 'EricBruylant',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-06-16 18:00:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13302',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-06-16 12:56:17',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2707',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '13273',
      pageId: 'isomorphism',
      userId: 'PatrickStevens',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-06-16 07:12:04',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13267',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '7',
      type: 'newRequiredBy',
      createdAt: '2016-06-16 05:54:44',
      auxPageId: 'category_theory',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13241',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-06-16 04:20:49',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13240',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-16 04:11:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13239',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-16 04:10:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13233',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-06-16 04:02:52',
      auxPageId: 'isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13234',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-06-16 04:02:52',
      auxPageId: 'isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13235',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-16 04:02:52',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13228',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-16 04:01:47',
      auxPageId: 'group_isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13227',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-16 04:01:39',
      auxPageId: 'category_theory',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13226',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-16 04:01:34',
      auxPageId: 'morphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13225',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-16 04:01:18',
      auxPageId: 'math0',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13224',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-06-16 04:00:56',
      auxPageId: 'math1',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13223',
      pageId: 'isomorphism',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-16 04:00:54',
      auxPageId: 'math1',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}