{ localUrl: '../page/lagrange_theorem_on_subgroup_size_intuitive.html', arbitalUrl: 'https://arbital.com/p/lagrange_theorem_on_subgroup_size_intuitive', rawJsonUrl: '../raw/4vz.json', likeableId: '2868', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'PatrickStevens' ], pageId: 'lagrange_theorem_on_subgroup_size_intuitive', edit: '9', editSummary: 'updated link to cardinality', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'Lagrange theorem on subgroup size: Intuitive version', clickbait: 'Lagrange's theorem strongly restricts the size a subgroup of a group can be.', textLength: '4324', alias: 'lagrange_theorem_on_subgroup_size_intuitive', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricBruylant', editCreatedAt: '2016-08-27 14:11:30', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-28 09:00:01', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '64', text: '[summary: Lagrange's Theorem gives us a restriction on the size of a subgroup of a finite group: namely, subgroups have size dividing the parent group.]\n\nGiven a finite [-3gd] $G$, it may have many [576 subgroups].\nSo far, we know almost nothing about those subgroups; it would be great if we had some way of restricting them.\n\nAn example of such a restriction, which we do already know, is that a subgroup $H$ of $G$ has to have [3gg size] less than or equal to the size of $G$ itself.\nThis is because $H$ is contained in $G$, and if the set $X$ is contained in the set $Y$ then the size of $X$ is less than or equal to the size of $Y$.\n(This would have to be true for any reasonable definition of "size"; the [4w5 usual definition] certainly has this property.)\n\nLagrange's Theorem gives us a much more powerful restriction: not only is the size $|H|$ of $H$ less than or equal to $|G|$, but in fact $|H|$ divides $|G|$.\n\n%%hidden(Example: subgroups of the cyclic group on six elements):\n*A priori*, all we know about the subgroups of the [-47y] $C_6$ of order $6$ is that they are of order $1, 2, 3, 4, 5$ or $6$.\n\nLagrange's Theorem tells us that they can only be of order $1, 2, 3$ or $6$: there are no subgroups of order $4$ or $5$.\nLagrange tells us nothing about whether there *are* subgroups of size $1,2,3$ or $6$: only that if we are given a subgroup, then it is of one of those sizes.\n\nIn fact, as an aside, there are indeed subgroups of sizes $1,2,3,6$:\n\n- the subgroup containing only the identity is of order $1$\n- the "improper" subgroup $C_6$ is of order $6$\n- subgroups of size $2$ and $3$ are guaranteed by [4l6 Cauchy's theorem].\n\n%%\n\n# Proof\n\nIn order to show that $|H|$ divides $|G|$, we would be done if we could divide the elements of $G$ up into separate buckets of size $|H|$.\n\nThere is a fairly obvious place to start: we already have one bucket of size $|H|$, namely $H$ itself (which consists of some elements of $G$).\nCan we perhaps use this to create more buckets of size $|H|$?\n\nFor motivation: if we think of $H$ as being a collection of symmetries (which we can do, by [49b Cayley's Theorem] which states that all groups may be viewed as collections of symmetries), then we can create more symmetries by "tacking on elements of $G$".\n\nFormally, let $g$ be an element of $G$, and consider $gH = \\{ g h : h \\in H \\}$.\n\nExercise: every element of $G$ does have one of these buckets $gH$ in which it lies.\n%%hidden(Show solution):\nThe element $g$ of $G$ is contained in the bucket $gH$, because the identity $e$ is contained in $H$ and so $ge$ is in $gH$; but $ge = g$.\n%%\n\nExercise: $gH$ is a set of size $|H|$. %%note:More formally put, [-4j8].%%\n%%hidden(Show solution):\nIn order to show that $gH$ has size $|H|$, it is enough to match up the elements of $gH$ [499 bijectively] with the elements of $|H|$.\n\nWe can do this with the [-3jy] $H \\to gH$ taking $h \\in H$ and producing $gh$.\nThis has an [4sn inverse]: the function $gH \\to H$ which is given by pre-multiplying by $g^{-1}$, so that $gx \\mapsto g^{-1} g x = x$.\n%%\n\nNow, are all these buckets separate? Do any of them overlap?\n\nExercise: if $x \\in rH$ and $x \\in sH$ then $rH = sH$. That is, if any two buckets intersect then they are the same bucket. %%note:More formally put, [4j5].%%\n%%hidden(Show solution):\nSuppose $x \\in rH$ and $x \\in sH$.\n\nThen $x = r h_1$ and $x = s h_2$, some $h_1, h_2 \\in H$.\n\nThat is, $r h_1 = s h_2$, so $s^{-1} r h_1 = h_2$.\nSo $s^{-1} r = h_2 h_1^{-1}$, so $s^{-1} r$ is in $H$ by closure of $H$.\n\nBy taking inverses, $r^{-1} s$ is in $H$.\n\nBut that means $\\{ s h : h \\in H \\}$ and $\\{ r h : h \\in H\\}$ are equal.\nIndeed, we show that each is contained in the other.\n\n- if $a$ is in the right-hand side, then $a = rh$ for some $h$. Then $s^{-1} a = s^{-1} r h$; but $s^{-1} r$ is in $H$, so $s^{-1} r h$ is in $H$, and so $s^{-1} a$ is in $H$.\nTherefore $a \\in s H$, so $a$ is in the left-hand side.\n- if $a$ is in the left-hand side, then $a = sh$ for some $h$. Then $r^{-1} a = r^{-1} s h$; but $r^{-1} s$ is in $H$, so $r^{-1} s h$ is in $H$, and so $r^{-1} a$ is in $H$.\nTherefore $a \\in rH$, so $a$ is in the right-hand side.\n%%\n\nWe have shown that the "[4j4 cosets]" $gH$ are all completely disjoint and are all the same size, and that every element lies in a bucket; this completes the proof.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens', 'EricBruylant' ], childIds: [], parentIds: [ 'lagrange_theorem_on_subgroup_size' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4507', parentId: 'group_mathematics', childId: 'lagrange_theorem_on_subgroup_size_intuitive', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-28 08:59:26', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4508', parentId: 'group_order', childId: 'lagrange_theorem_on_subgroup_size_intuitive', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-28 08:59:34', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [ { id: '4509', parentId: 'left_cosets_partition_parent_group', childId: 'lagrange_theorem_on_subgroup_size_intuitive', type: 'subject', creatorId: 'PatrickStevens', createdAt: '2016-06-28 09:30:01', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4510', parentId: 'left_cosets_biject', childId: 'lagrange_theorem_on_subgroup_size_intuitive', type: 'subject', creatorId: 'PatrickStevens', createdAt: '2016-06-28 09:30:17', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4511', parentId: 'lagrange_theorem_on_subgroup_size_intuitive', childId: 'lagrange_theorem_on_subgroup_size_intuitive', type: 'subject', creatorId: 'PatrickStevens', createdAt: '2016-06-28 09:30:21', level: '1', isStrong: 'false', everPublished: 'true' } ], lenses: [], lensParentId: 'lagrange_theorem_on_subgroup_size', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19293', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'EricBruylant', edit: '9', type: 'newEdit', createdAt: '2016-08-27 14:11:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'updated link to cardinality' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18589', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'deleteTag', createdAt: '2016-08-08 13:33:15', auxPageId: 'needs_clickbait_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18587', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '8', type: 'newEdit', createdAt: '2016-08-08 13:33:04', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18586', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '7', type: 'newEdit', createdAt: '2016-08-08 13:32:24', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17122', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-19 02:03:58', auxPageId: 'needs_clickbait_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14681', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '6', type: 'newEdit', createdAt: '2016-06-28 09:34:05', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14680', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '5', type: 'newEdit', createdAt: '2016-06-28 09:32:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14678', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newTeacher', createdAt: '2016-06-28 09:30:21', auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14679', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newSubject', createdAt: '2016-06-28 09:30:21', auxPageId: 'lagrange_theorem_on_subgroup_size_intuitive', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14677', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newSubject', createdAt: '2016-06-28 09:30:18', auxPageId: 'left_cosets_biject', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14675', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newSubject', createdAt: '2016-06-28 09:30:02', auxPageId: 'left_cosets_partition_parent_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14672', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-06-28 09:06:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14671', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-28 09:04:12', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14670', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-28 09:00:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14667', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-06-28 09:00:03', auxPageId: 'lagrange_theorem_on_subgroup_size', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14668', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-28 09:00:03', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14669', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-28 09:00:03', auxPageId: 'group_order', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14665', pageId: 'lagrange_theorem_on_subgroup_size_intuitive', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-28 09:00:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }