{
localUrl: '../page/least_common_multiple.html',
arbitalUrl: 'https://arbital.com/p/least_common_multiple',
rawJsonUrl: '../raw/65x.json',
likeableId: '3536',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'JaimeSevillaMolina',
'JohannesSchmitt'
],
pageId: 'least_common_multiple',
edit: '4',
editSummary: '',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Least common multiple',
clickbait: '',
textLength: '2002',
alias: 'least_common_multiple',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'KevinClancy',
editCreatedAt: '2016-09-25 21:50:36',
pageCreatorId: 'JohannesSchmitt',
pageCreatedAt: '2016-09-24 09:10:09',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '38',
text: '[summary: The **least common multiple (LCM)** of two positive [45h natural numbers] a, b is the smallest natural number that both a and b divide, so for instance LCM(12,10) = 60.]\n\nGiven two positive natural numbers $a$ and $b$, their **least common multiple** $\\text{LCM}(a,b)$ is the smallest natural number divided by both $a$ and $b$. As an example take $a=12, b=10$, then the smallest number divided by both of them is $60$.\n\nThere is an equivalent definition of the LCM, which is strange at first glance but turns out to be mathematically much more suited to generalisation: the LCM $l$ of $a$ and $b$ is the natural number such that for every number $c$ divisible by both $a$ and $b$, we have $l$ divides $c$.\nThis describes the LCM as a [3rc poset least upper bound] (namely the [-3rb] $\\mathbb{N}$ under the relation of divisibility).\n\nNote that for $a$, $b$ given, their product $ab$ is a natural number divided by both of them. The least common multiple $\\text{LCM}(a,b)$ divides the product $ab$ and for $\\text{GCD}(a,b)$ the [-5mw] of $a, b$ we have the formula\n$$a\\cdot b = \\text{GCD}(a,b) \\cdot \\text{LCM}(a,b). $$\nThis formula offers a fast way to compute the least common multiple: one can compute $\\text{GCD}(a,b)$ using the [euclidean_algorithm] and then divide the product $ab$ by this number.\n\nIn practice, for small numbers $a,b$ it is often easier to use their factorization into [4mf prime numbers]. In the example above we have $12=2 \\cdot 2 \\cdot 3$ and $10=2 \\cdot 5$, so if we want to build the smallest number $c$ divided by both of them, we can take $60=2 \\cdot 2 \\cdot 3 \\cdot 5$. Indeed, to compute $c$ look at each prime number $p$ dividing one of $a,b$ (in the example $p=2,3,5$). Then writing $c$ as a product we take the factor $p$ the maximal number of times it appears in $a$ and $b$. The factor $p=2$ appears twice in $12$ and once in $10$, so we take it two times. The factor $3$ appears once in $12$ and zero times in $10$, so we only take it once, and so on.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'JohannesSchmitt',
'KevinClancy'
],
childIds: [],
parentIds: [
'math'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '3549',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '19728',
pageId: 'least_common_multiple',
userId: 'KevinClancy',
edit: '4',
type: 'newEdit',
createdAt: '2016-09-25 21:50:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19710',
pageId: 'least_common_multiple',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-09-24 10:30:21',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19709',
pageId: 'least_common_multiple',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-09-24 10:29:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19708',
pageId: 'least_common_multiple',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-09-24 10:26:36',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3540',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '19706',
pageId: 'least_common_multiple',
userId: 'JohannesSchmitt',
edit: '1',
type: 'newEdit',
createdAt: '2016-09-24 09:10:09',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}