{ localUrl: '../page/log_base_infinity.html', arbitalUrl: 'https://arbital.com/p/log_base_infinity', rawJsonUrl: '../raw/4c8.json', likeableId: '2688', likeableType: 'page', myLikeValue: '0', likeCount: '3', dislikeCount: '0', likeScore: '3', individualLikes: [ 'EricBruylant', 'NateSoares', 'EricRogstad' ], pageId: 'log_base_infinity', edit: '4', editSummary: '', prevEdit: '3', currentEdit: '4', wasPublished: 'true', type: 'wiki', title: 'Log base infinity', clickbait: 'There is no log base infinity, but if there were, it would send everything to zero', textLength: '1349', alias: 'log_base_infinity', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'NateSoares', editCreatedAt: '2016-06-24 04:44:24', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-06-15 06:31:07', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '156', text: 'There is no $\\log_{\\infty},$ because $\\infty$ is not a [-4bc]. Nevertheless, the function $z$ defined as $z(x) = 0$ for all $x \\in$ [positive_reals $\\mathbb R^+$] can pretty readily be interpreted as $\\log_{\\infty}$.\n\nThat is, $z$ satisfies all properties of the basic [4bz properties of the logarithm] except for the one that says there exists a $b$ such that $\\log(b) = 1.$ In the case of $\\log_\\infty,$ the logarithm base infinity claims "well, if you gave me a $b$ that was _large enough_ I might return 1, but for all measly finite numbers I return 0." In fact, if you're feeling ambitious, you can define $\\log_\\infty$ to be a [-multifunction] which allows infinite inputs, and define $\\log_\\infty(\\infty)$ to return any positive real number that you'd like (1 included). This requires a few hijinks (like defining $\\infty^0$ to also return any number that you'd like), but can be made to work and satisfy all the basic logarithm properties (if you strategically re-interpret some '$=$' signs as '[set_contains $\\in$]' signs).\n\nThe moral of the story is that functions that send everything to zero are _almost_ logarithm functions, with the minor caveat that they utterly destroy all the intricate structure that logarithm functions tap into. (That's what happens when you choose "0" as your arbitrary scaling factor when tapping into [-4gp].)', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'NateSoares', 'EricBruylant' ], childIds: [], parentIds: [ 'logarithm' ], commentIds: [], questionIds: [], tagIds: [ 'start_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15221', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '0', type: 'newTag', createdAt: '2016-07-04 06:25:45', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15223', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '0', type: 'deleteTag', createdAt: '2016-07-04 06:25:45', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14552', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '4', type: 'newEdit', createdAt: '2016-06-24 04:44:24', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13404', pageId: 'log_base_infinity', userId: 'EricBruylant', edit: '3', type: 'newEdit', createdAt: '2016-06-16 23:03:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13248', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '2', type: 'newEdit', createdAt: '2016-06-16 05:07:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12920', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-06-15 06:31:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12917', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '1', type: 'newTag', createdAt: '2016-06-15 06:29:53', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12916', pageId: 'log_base_infinity', userId: 'NateSoares', edit: '1', type: 'newParent', createdAt: '2016-06-15 06:29:50', auxPageId: 'logarithm', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }