{ localUrl: '../page/log_lattice.html', arbitalUrl: 'https://arbital.com/p/log_lattice', rawJsonUrl: '../raw/4gp.json', likeableId: '2732', likeableType: 'page', myLikeValue: '0', likeCount: '5', dislikeCount: '0', likeScore: '5', individualLikes: [ 'EricBruylant', 'NateSoares', 'MalcolmMcCrimmon', 'EricRogstad', 'SzymonSlawinski' ], pageId: 'log_lattice', edit: '9', editSummary: '', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'The log lattice', clickbait: '', textLength: '4735', alias: 'log_lattice', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'MalcolmMcCrimmon', editCreatedAt: '2016-07-30 03:12:49', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-06-17 06:24:23', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '341', text: '[45q] and other pages give physical interpretations of what logarithms are really doing. Now it's time to understand the raw numerics. Logarithm functions often output irrational, [-transcendental] numbers. For example, $\\log_2(3)$ starts with\n\n1.5849625007211561814537389439478165087598144076924810604557526545410982277943585625222804749180882420909806624750591673437175524410609248221420839506216982994936575922385852344415825363027476853069780516875995544737266834624612364248850047581810676961316404807130823233281262445248670633898014837234235783662478390118977006466312634223363341821270106098049177472541357330110499026268818251703576994712157113638912494135752192998699040767081539505404488360\n\nWhat do these long strings of digits mean? Why these numbers, in particular? We already have the tools to answer those questions, all that remains is to put them together into a visualization. In [44l], we saw why it is that $\\log_2(3)$ must be this number: The cost of a [4sj 3-digit] in terms of 2-digits is more than 1 and less than 2; and the cost of ten 3-digits = one $3^{10}$-digit in terms of 2-digits is more than 15 and less than 16, and the cost of a hundred 3-digits = one $3^{100}$-digit in terms of 2-digits is more than 158 and less than 159, and so on. The giant number above is telling us about the _entire sequence_ of $3^{n}$-digit costs, for every $n$. If we double it, we get the cost of a 9-digit in terms of 2-digits. If we triple it, we get the cost of a 27-digit in terms of 2-digits.\n\nIn fact, this number also interacts correctly with all the other outputs of $\\log_2.$ $\\log_2(2)=1,$ and if we add 1 to the number above, we get the cost of a 6-digit in terms of 2-digits.\n\nThat is, the outputs of the log base 2 form a gigantic lattice, with an often-irrational output corresponding to each input. The gigantic lattice is set up just so, such that whenever you start at $x$ on the left and go to $x \\cdot y,$ the output you get on the right is the output to that corresponds to $x$ plus the output that corresponds to $y$.\n\n![The values of log2 on integers from 1 to 10](http://i.imgur.com/FvRymOk.png)\n\n_The values of the logarithm base 2 on integers from 1 to 10._\n\nThe log lattice is this giant lattice assigning a specific number to each number, such that multiplying on the left corresponds to adding on the right.\n\n![A demonstration that log2(3^10) is 10 log2(3)](http://i.imgur.com/tuTYlge.png)\n\n_An illustration of some of the connections between the logs base 2 of powers of 3._\n\nIt's an intricate lattice that preservers a huge amount of structure — all the structure of the numbers, in fact, given that $\\log$ is invertible. $\\log_2(3)$ is a number that is simultaneously $1$ less than $\\log_2(6),$ and half of $\\log_2(9)$, and a tenth of $\\log_2(3^{10}),$ and $\\log_2(3^9)$ less than $\\log_2(3^{10}).$ The value of $\\log_2(3)$ has to satisfy a _massive_ number of constraints, in order to be precisely the number such that multiplication on the left corresponds to addition on the right. It's no surprise, then, that [4n8 it has no concise decimal expansion].\n\n![A demonstration of the relationships between the log2 powers of 3](http://i.imgur.com/e650J5j.png)\n\n_Notice the connections between the logs base 2 of the powers of 3. log 2 of 3 is a tenth of log 2 of 3<sup>10</sup> is a tenth of the log 2 of 3<sup>100</sup>, which is twice the log 2 of 3<sup>50</sup> which is twice the log 2 of 3<sup>25</sup>. And, of course, the log 2 of 3<sup>101</sup> is about 1.58 units larger than the log 2 of 3<sup>100</sup>._\n\nIn fact, the constraints on this log lattice are so tight that there's only one way to do it, up to a multiplicative constant. You can multiply everything on the right side by a constant, and that's the only thing you can do without disturbing the structure. For example, here's part of the log lattice viewed in base 3:\n\n![The base 3 log lattice](http://i.imgur.com/yhcy9BZ.png)\n\nIt's exactly the same as the log lattice viewed in base 2, except that everything on the right has been divided by about 1.58 (i.e., multiplied by about 0.63).\n\nWhat are logarithms doing? Well, fundamentally, there is a way to transform numbers such that what was once multiplication is now addition. If you were going to do multiplication to some numbers, you can transform them into this lattice, and then do addition, and then transform them back, and you'll get the same result. There's only one way to preserve all that structure, although if you want to view the structure, you need to (arbitrarily) choose some number on the left to call "1" on the right. Given that choice $b$ of translation, the log base $b$ taps into that intricate lattice.\n\n[visualization(log-graph-demo):]', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'EricRogstad', 'NateSoares', 'AlexeiAndreev', 'MalcolmMcCrimmon' ], childIds: [], parentIds: [ 'logarithm' ], commentIds: [ '4n5', '5nv' ], questionIds: [], tagIds: [ 'b_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19600', pageId: 'log_lattice', userId: 'AlexeiAndreev', edit: '0', type: 'newTag', createdAt: '2016-09-15 00:04:25', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19599', pageId: 'log_lattice', userId: 'AlexeiAndreev', edit: '0', type: 'deleteTag', createdAt: '2016-09-15 00:04:22', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17786', pageId: 'log_lattice', userId: 'EricRogstad', edit: '10', type: 'newEdit', createdAt: '2016-07-30 04:55:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'accepting part of Malcolm's edit' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17780', pageId: 'log_lattice', userId: 'MalcolmMcCrimmon', edit: '9', type: 'newEdit', createdAt: '2016-07-30 03:12:49', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16312', pageId: 'log_lattice', userId: 'AlexeiAndreev', edit: '8', type: 'newEdit', createdAt: '2016-07-10 00:08:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16311', pageId: 'log_lattice', userId: 'AlexeiAndreev', edit: '7', type: 'newEdit', createdAt: '2016-07-10 00:04:41', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14195', pageId: 'log_lattice', userId: 'NateSoares', edit: '6', type: 'newEdit', createdAt: '2016-06-20 23:40:28', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14184', pageId: 'log_lattice', userId: 'NateSoares', edit: '5', type: 'newEdit', createdAt: '2016-06-20 23:29:37', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14178', pageId: 'log_lattice', userId: 'EricRogstad', edit: '4', type: 'newEdit', createdAt: '2016-06-20 23:10:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14177', pageId: 'log_lattice', userId: 'EricRogstad', edit: '3', type: 'newEdit', createdAt: '2016-06-20 23:04:36', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14176', pageId: 'log_lattice', userId: 'EricRogstad', edit: '2', type: 'newEdit', createdAt: '2016-06-20 23:04:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13440', pageId: 'log_lattice', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-06-17 06:24:23', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13437', pageId: 'log_lattice', userId: 'NateSoares', edit: '1', type: 'newTag', createdAt: '2016-06-17 06:24:21', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13436', pageId: 'log_lattice', userId: 'NateSoares', edit: '1', type: 'newParent', createdAt: '2016-06-17 06:24:10', auxPageId: 'logarithm', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }