{
localUrl: '../page/log_tutorial_end.html',
arbitalUrl: 'https://arbital.com/p/log_tutorial_end',
rawJsonUrl: '../raw/4h2.json',
likeableId: '2745',
likeableType: 'page',
myLikeValue: '0',
likeCount: '5',
dislikeCount: '0',
likeScore: '5',
individualLikes: [
'EricBruylant',
'NateSoares',
'EricRogstad',
'SzymonSlawinski',
'JimmySantillan'
],
pageId: 'log_tutorial_end',
edit: '5',
editSummary: '',
prevEdit: '4',
currentEdit: '5',
wasPublished: 'true',
type: 'wiki',
title: 'The End (of the basic log tutorial)',
clickbait: '',
textLength: '2070',
alias: 'log_tutorial_end',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'AlexeiAndreev',
editCreatedAt: '2016-09-21 01:27:16',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-06-17 07:05:44',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '200',
text: 'That concludes our introductory tutorial on logarithms! You have made it to the end.\n\nThroughout this tutorial, we saw that the logarithm base $b$ of $x$ calculates the number of $b$-factors in $x.$ Hopefully, this claim now means more to you than it once did. We've seen a number of different ways of interpreting what logarithms are doing, including:\n\n- $\\log_b(x) = y$ means [416 "it takes about $y$ digits to write $x$ in base $b$."]\n- $\\log_b(x) = y$ means [44l "it takes about $y$ $b$-digits to emulate an $x$-digit."]\n- $\\log_b(x) = y$ means [45q "if the space of possible messages to send goes up by a factor of $x$, then the cost, in $b$-digits, goes up by a factor of $y$]\n- And, simply, $\\log_b(x) = y$ means that if you start with 1 and grow it by factors of $b$, then after $y$ iterations of this your result will be $x.$\n\nFor example, $\\log_2(100)$ counts the number of doublings that constitute a factor-of-100 increase. (The answer is more than 6 doublings, but slightly less than 7 doublings).\n\nWe've also seen that any function $f$ whose output grows by a constant (that depends on $y$) every time its input grows by a factor of $y$ is [4bz very likely a logarithm function], and that, in essence, [-4gm] function.\n\nWe've glanced at the [4gp underlying structure] that all logarithm functions tap into, and we've briefly discussed [4h0 what makes working with logarithms so dang useful].\n\nThere are also a huge number of questions about, applications for, and extensions of the logarithm that we _didn't_ explore. Those include, but are not limited to:\n\n- Why is $e$ the natural base of the logarithm?\n- What is up with the link between logarithms, exponentials, and roots?\n- What is the derivative of $\\log_b(x)$ and why is it proportional to $\\frac{1}{x}$?\n- How can logarithms be efficiently calculated?\n- What happens when we extend logarithms to complex numbers, and why is the result a [-multifunction]?\n\nAnswering these questions will require an advanced tutorial on logarithms. Such a thing does not exist yet, but you can help make it happen.\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'NateSoares',
'AlexeiAndreev'
],
childIds: [],
parentIds: [
'logarithm'
],
commentIds: [],
questionIds: [],
tagIds: [
'b_class_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19655',
pageId: 'log_tutorial_end',
userId: 'AlexeiAndreev',
edit: '5',
type: 'newEdit',
createdAt: '2016-09-21 01:27:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19653',
pageId: 'log_tutorial_end',
userId: 'AlexeiAndreev',
edit: '0',
type: 'deleteTag',
createdAt: '2016-09-21 01:27:11',
auxPageId: 'work_in_progress_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19654',
pageId: 'log_tutorial_end',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newTag',
createdAt: '2016-09-21 01:27:11',
auxPageId: 'b_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19614',
pageId: 'log_tutorial_end',
userId: 'NateSoares',
edit: '4',
type: 'newEdit',
createdAt: '2016-09-15 01:45:52',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13808',
pageId: 'log_tutorial_end',
userId: 'NateSoares',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-18 04:51:09',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13452',
pageId: 'log_tutorial_end',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-17 07:05:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13449',
pageId: 'log_tutorial_end',
userId: 'NateSoares',
edit: '1',
type: 'newParent',
createdAt: '2016-06-17 07:05:42',
auxPageId: 'logarithm',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13448',
pageId: 'log_tutorial_end',
userId: 'NateSoares',
edit: '1',
type: 'newTag',
createdAt: '2016-06-17 07:05:41',
auxPageId: 'work_in_progress_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}