{
localUrl: '../page/logical_system.html',
arbitalUrl: 'https://arbital.com/p/logical_system',
rawJsonUrl: '../raw/5hh.json',
likeableId: '3148',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'logical_system',
edit: '4',
editSummary: '',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Logical system',
clickbait: '',
textLength: '2082',
alias: 'logical_system',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'DylanHendrickson',
editCreatedAt: '2016-07-22 17:19:53',
pageCreatorId: 'JaimeSevillaMolina',
pageCreatedAt: '2016-07-20 21:14:07',
seeDomainId: '0',
editDomainId: 'arbital_featured_project',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '38',
text: 'Logical systems (a.k.a. formal systems) are mathematical abstractions that aim to capture the notion of reasoning to reach valid conclusions from certain premises.\n\nA logical system can be thought of as a procedure which divides a [-language] in badly-formed and well-formed sentences, and further splits this last group into theorems and not theorems.\n\nLogical systems are made from a series of elements: a **language**, a **syntax**, **axioms** and **rules of inference**.\n\nA **language** consists of the [word words] that can be formed from a set of symbols. Typically, we will want our language to be [-enumerable] and [-computable]. For example, a possible language for arithmetic is $\\Sigma^* = \\{\\neg,\\wedge,\\vee,=,+,\\cdot ,0,a_1,a_2,a_3,...\\}^*$.\n\nA **syntax** is the collection of rules which determine whether a word of our language is a well-formed formula. \n\nThe **axioms** are distinguished formulas of the language that are taken to true *a priori*. A logical system is [-axiomatizable] if its set of axioms is computable.\n\nThe **rules of inference** are $n+1$-[-tuples] that represent a function from $n$ formulas (premises) to a new formula (conclusion). For example, we have *modus ponens* as a rule of inference, which says that from a formula of the form $A\\rightarrow B$ and another of the form $A$ you can deduce $B$. Almost always we will want our rules of inference to be [-computable]. Axioms can be thought of as rules of inference for which no premise is necessary.\n\nAxioms and rules of inference are used to construct proofs. A proof of a sentence $S$ of the language is a finite sequence of sentences, such that every sentence is either an axiom or can be deduced from the previous sentences using a rule of inference, and the last sentence in the sequence is $S$. Sentences which have a proof are called theorems of the system.\n\nNote that logical systems are purely syntactical entities - they talk for themselves about nothing. Logical systems are given meaning through [-semantics]. \n\nLogical systems can relate to one another through [-translations].',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JaimeSevillaMolina',
'EricRogstad',
'DylanHendrickson'
],
childIds: [],
parentIds: [
'logic',
'2h8'
],
commentIds: [],
questionIds: [],
tagIds: [
'needs_clickbait_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '2h8',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '3170',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '3',
dislikeCount: '0',
likeScore: '3',
individualLikes: [],
id: '17323',
pageId: 'logical_system',
userId: 'DylanHendrickson',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-22 17:19:53',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17219',
pageId: 'logical_system',
userId: 'JaimeSevillaMolina',
edit: '0',
type: 'newParent',
createdAt: '2016-07-21 07:54:13',
auxPageId: '2h8',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3159',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17217',
pageId: 'logical_system',
userId: 'JaimeSevillaMolina',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-21 07:26:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17216',
pageId: 'logical_system',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-21 06:48:34',
auxPageId: 'needs_clickbait_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17215',
pageId: 'logical_system',
userId: 'EricBruylant',
edit: '0',
type: 'deleteParent',
createdAt: '2016-07-21 06:48:14',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17213',
pageId: 'logical_system',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-21 06:48:11',
auxPageId: 'logic',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17211',
pageId: 'logical_system',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-21 06:47:38',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17199',
pageId: 'logical_system',
userId: 'EricRogstad',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-20 23:07:00',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17198',
pageId: 'logical_system',
userId: 'JaimeSevillaMolina',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-20 21:14:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}