{
  localUrl: '../page/logistic_function.html',
  arbitalUrl: 'https://arbital.com/p/logistic_function',
  rawJsonUrl: '../raw/558.json',
  likeableId: '3013',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'TravisRivera'
  ],
  pageId: 'logistic_function',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Logistic function',
  clickbait: 'A monotonic function from the real numbers to the open unit interval.',
  textLength: '1470',
  alias: 'logistic_function',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JoeZeng',
  editCreatedAt: '2016-07-07 01:33:37',
  pageCreatorId: 'JoeZeng',
  pageCreatedAt: '2016-07-07 01:33:37',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '60',
  text: '[summary: The logistic function is a [-sigmoid] function that maps the [4bc real numbers] to the unit interval $(0, 1)$ using the formula $\\displaystyle f(x) = \\frac{1}{1 + e^{-x}}$ or variants of this formula.]\n\nThe logistic function is a [-sigmoid] function that maps the [4bc real numbers] to the unit interval $(0, 1)$ using the formula $\\displaystyle f(x) = \\frac{1}{1 + e^{-x}}$.\n\nMore generally, there exists a [family_of_functions family] of logistic functions that can be written as $\\displaystyle f(x) = \\frac{M}{1 + \\alpha^{c(x_0 - x)}}$, where:\n\n* $M$ is the upper bound of the function (in which case the function maps to the interval $(0, M)$ instead). When $M = 1$, the logistic function is usually being used to calculate some [-1rf] or [-4w3] of a total.\n\n* $x_0$ is the inflection point of the curve, or the value of $x$ where the function's growth stops speeding up and starts slowing down.\n\n* $\\alpha$ is a variable controlling the steepness of the curve.\n\n* $c$ is a scaling factor for the distance.\n\n## Applications\n\n* The logistic function is used to model growth rates of populations in an ecosystem with a limited carrying capacity.\n\n* The inverse logistic function (with $\\alpha = 2$) is used to convert a probability to log-odds form for use in [1lz].\n\n* The logistic function (with $\\alpha = 10$ and $c = 1/400$) is used to calculate the expected probability of a player winning given a specific difference in rating in the Elo rating system.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'JoeZeng'
  ],
  childIds: [],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'start_meta_tag',
    'needs_parent_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16108',
      pageId: 'logistic_function',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-07 23:53:03',
      auxPageId: 'needs_parent_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16107',
      pageId: 'logistic_function',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-07 23:52:27',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15884',
      pageId: 'logistic_function',
      userId: 'JoeZeng',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-07 01:36:08',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15883',
      pageId: 'logistic_function',
      userId: 'JoeZeng',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-07 01:33:37',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}