{
localUrl: '../page/logistic_function.html',
arbitalUrl: 'https://arbital.com/p/logistic_function',
rawJsonUrl: '../raw/558.json',
likeableId: '3013',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'TravisRivera'
],
pageId: 'logistic_function',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Logistic function',
clickbait: 'A monotonic function from the real numbers to the open unit interval.',
textLength: '1470',
alias: 'logistic_function',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'JoeZeng',
editCreatedAt: '2016-07-07 01:33:37',
pageCreatorId: 'JoeZeng',
pageCreatedAt: '2016-07-07 01:33:37',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '60',
text: '[summary: The logistic function is a [-sigmoid] function that maps the [4bc real numbers] to the unit interval $(0, 1)$ using the formula $\\displaystyle f(x) = \\frac{1}{1 + e^{-x}}$ or variants of this formula.]\n\nThe logistic function is a [-sigmoid] function that maps the [4bc real numbers] to the unit interval $(0, 1)$ using the formula $\\displaystyle f(x) = \\frac{1}{1 + e^{-x}}$.\n\nMore generally, there exists a [family_of_functions family] of logistic functions that can be written as $\\displaystyle f(x) = \\frac{M}{1 + \\alpha^{c(x_0 - x)}}$, where:\n\n* $M$ is the upper bound of the function (in which case the function maps to the interval $(0, M)$ instead). When $M = 1$, the logistic function is usually being used to calculate some [-1rf] or [-4w3] of a total.\n\n* $x_0$ is the inflection point of the curve, or the value of $x$ where the function's growth stops speeding up and starts slowing down.\n\n* $\\alpha$ is a variable controlling the steepness of the curve.\n\n* $c$ is a scaling factor for the distance.\n\n## Applications\n\n* The logistic function is used to model growth rates of populations in an ecosystem with a limited carrying capacity.\n\n* The inverse logistic function (with $\\alpha = 2$) is used to convert a probability to log-odds form for use in [1lz].\n\n* The logistic function (with $\\alpha = 10$ and $c = 1/400$) is used to calculate the expected probability of a player winning given a specific difference in rating in the Elo rating system.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JoeZeng'
],
childIds: [],
parentIds: [
'math'
],
commentIds: [],
questionIds: [],
tagIds: [
'start_meta_tag',
'needs_parent_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16108',
pageId: 'logistic_function',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-07 23:53:03',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16107',
pageId: 'logistic_function',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-07 23:52:27',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15884',
pageId: 'logistic_function',
userId: 'JoeZeng',
edit: '0',
type: 'newTag',
createdAt: '2016-07-07 01:36:08',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15883',
pageId: 'logistic_function',
userId: 'JoeZeng',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-07 01:33:37',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}