{
localUrl: '../page/math_3_examples.html',
arbitalUrl: 'https://arbital.com/p/math_3_examples',
rawJsonUrl: '../raw/56b.json',
likeableId: '2986',
likeableType: 'page',
myLikeValue: '0',
likeCount: '4',
dislikeCount: '0',
likeScore: '4',
individualLikes: [
'AlexeiAndreev',
'JaimeSevillaMolina',
'MarkChimes',
'EricRogstad'
],
pageId: 'math_3_examples',
edit: '7',
editSummary: '',
prevEdit: '6',
currentEdit: '7',
wasPublished: 'true',
type: 'wiki',
title: 'Math 3 example statements',
clickbait: 'If you can read these formulas, you're in Math 3!',
textLength: '2012',
alias: 'math_3_examples',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'JoeZeng',
editCreatedAt: '2016-07-10 12:29:15',
pageCreatorId: 'JoeZeng',
pageCreatedAt: '2016-07-07 01:09:50',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '4',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '381',
text: 'If you're at a Math 3 level, you'll probably be familiar with at least some of these sentences and formulas, or you would be able to understand what they meant on a surface level if you were to look them up. Note that you don't necessarily have to understand the *proofs* of these statements (that's what we're here for, to teach you what they mean), but your eyes shouldn't gloss over them either.\n\n> In a [3gd group] $G$, the [-4bj] of an element $g$ is the set of elements that can be written as $hgh^{-1}$ for all $h \\in G$.\n\n> The [ rank-nullity theorem] states that for any [-linear_mapping] $f: V \\to W$, the [-dimension] of the [-image] of $f$ plus the dimension of the [-kernel] of $f$ is equal to the dimension of $V$.\n\n> A [ Baire space] is a space that satisfies [ Baire's Theorem] on [complete_metric_space complete metric spaces]: For a [-topological_space] $X$, if ${F_1, F_2, F_3, \\ldots}$ is a [countable_set countable] collection of open sets that are [dense_set dense] in $X$, then $\\bigcap_{n=1}^\\infty F_n$ is also dense in $X$.\n\n> The [riemann_hypothesis] asserts that every non-trivial zero of the [riemann_zeta_function] $\\zeta(s) = \\sum_{n=1}^\\infty \\frac{1}{s^n}$ when $s$ is a complex number has a real part equal to $\\frac12$.\n\n> $\\newcommand{\\pd}[2]{\\frac{\\partial #1}{\\partial #2}}$ The [jacobian_matrix] of a [vector_valued_function vector-valued function] $f: \\mathbb{R}^m \\to \\mathbb{R}^n$ is the matrix of [-partial_derivatives] $\\left[ \\begin{matrix} \\pd{y_1}{x_1} & \\pd{y_1}{x_2} & \\cdots & \\pd{y_1}{x_m} \\\\ \\pd{y_2}{x_1} & \\pd{y_2}{x_2} & \\cdots & \\pd{y_2}{x_m} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ \\pd{y_n}{x_1} & \\pd{y_n}{x_2} & \\cdots & \\pd{y_n}{x_m} \\end{matrix} \\right]$ between each component of the argument vector $x = (x_1, x_2, \\ldots, x_m)$ and each component of the result vector $y = f(x) = (y_1, y_2, \\ldots, y_n)$. It is notated as $\\displaystyle \\frac{d\\mathbf{y}}{d\\mathbf{x}}$ or $\\displaystyle \\frac{d(y_1, y_2, \\ldots, y_n)}{d(x_1, x_2, \\ldots, x_m)}$.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JoeZeng',
'DylanHendrickson'
],
childIds: [],
parentIds: [
'math3'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: 'math3',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16364',
pageId: 'math_3_examples',
userId: 'JoeZeng',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-10 12:29:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16285',
pageId: 'math_3_examples',
userId: 'JoeZeng',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-09 01:29:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'Tried to salvage the vector space statement.'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16275',
pageId: 'math_3_examples',
userId: 'DylanHendrickson',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-08 23:14:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16274',
pageId: 'math_3_examples',
userId: 'DylanHendrickson',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-08 23:13:29',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16003',
pageId: 'math_3_examples',
userId: 'JoeZeng',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-07 17:13:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15881',
pageId: 'math_3_examples',
userId: 'JoeZeng',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-07 01:12:24',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15879',
pageId: 'math_3_examples',
userId: 'JoeZeng',
edit: '0',
type: 'newParent',
createdAt: '2016-07-07 01:10:19',
auxPageId: 'math3',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15877',
pageId: 'math_3_examples',
userId: 'JoeZeng',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-07 01:09:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}