{
  localUrl: '../page/math_3_examples.html',
  arbitalUrl: 'https://arbital.com/p/math_3_examples',
  rawJsonUrl: '../raw/56b.json',
  likeableId: '2986',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '4',
  dislikeCount: '0',
  likeScore: '4',
  individualLikes: [
    'AlexeiAndreev',
    'JaimeSevillaMolina',
    'MarkChimes',
    'EricRogstad'
  ],
  pageId: 'math_3_examples',
  edit: '7',
  editSummary: '',
  prevEdit: '6',
  currentEdit: '7',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Math 3 example statements',
  clickbait: 'If you can read these formulas, you're in Math 3!',
  textLength: '2012',
  alias: 'math_3_examples',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JoeZeng',
  editCreatedAt: '2016-07-10 12:29:15',
  pageCreatorId: 'JoeZeng',
  pageCreatedAt: '2016-07-07 01:09:50',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '4',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '381',
  text: 'If you're at a Math 3 level, you'll probably be familiar with at least some of these sentences and formulas, or you would be able to understand what they meant on a surface level if you were to look them up. Note that you don't necessarily have to understand the *proofs* of these statements (that's what we're here for, to teach you what they mean), but your eyes shouldn't gloss over them either.\n\n> In a [3gd group] $G$, the [-4bj] of an element $g$ is the set of elements that can be written as $hgh^{-1}$ for all $h \\in G$.\n\n> The [ rank-nullity theorem] states that for any [-linear_mapping] $f: V \\to W$, the [-dimension] of the [-image] of $f$ plus the dimension of the [-kernel] of $f$ is equal to the dimension of $V$.\n\n> A [ Baire space] is a space that satisfies [ Baire's Theorem] on [complete_metric_space complete metric spaces]: For a [-topological_space] $X$, if ${F_1, F_2, F_3, \\ldots}$ is a [countable_set countable] collection of open sets that are [dense_set dense] in $X$, then $\\bigcap_{n=1}^\\infty F_n$ is also dense in $X$.\n\n> The [riemann_hypothesis] asserts that every non-trivial zero of the [riemann_zeta_function] $\\zeta(s) = \\sum_{n=1}^\\infty \\frac{1}{s^n}$ when $s$ is a complex number has a real part equal to $\\frac12$.\n\n> $\\newcommand{\\pd}[2]{\\frac{\\partial #1}{\\partial #2}}$ The [jacobian_matrix] of a [vector_valued_function vector-valued function] $f: \\mathbb{R}^m \\to \\mathbb{R}^n$ is the matrix of [-partial_derivatives] $\\left[ \\begin{matrix} \\pd{y_1}{x_1} & \\pd{y_1}{x_2} & \\cdots & \\pd{y_1}{x_m} \\\\ \\pd{y_2}{x_1} & \\pd{y_2}{x_2} & \\cdots & \\pd{y_2}{x_m} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ \\pd{y_n}{x_1} & \\pd{y_n}{x_2} & \\cdots & \\pd{y_n}{x_m} \\end{matrix} \\right]$ between each component of the argument vector $x = (x_1, x_2, \\ldots, x_m)$ and each component of the result vector $y = f(x) = (y_1, y_2, \\ldots, y_n)$. It is notated as $\\displaystyle \\frac{d\\mathbf{y}}{d\\mathbf{x}}$ or $\\displaystyle \\frac{d(y_1, y_2, \\ldots, y_n)}{d(x_1, x_2, \\ldots, x_m)}$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'JoeZeng',
    'DylanHendrickson'
  ],
  childIds: [],
  parentIds: [
    'math3'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: 'math3',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16364',
      pageId: 'math_3_examples',
      userId: 'JoeZeng',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-07-10 12:29:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16285',
      pageId: 'math_3_examples',
      userId: 'JoeZeng',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-09 01:29:51',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Tried to salvage the vector space statement.'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16275',
      pageId: 'math_3_examples',
      userId: 'DylanHendrickson',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-08 23:14:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16274',
      pageId: 'math_3_examples',
      userId: 'DylanHendrickson',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-08 23:13:29',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16003',
      pageId: 'math_3_examples',
      userId: 'JoeZeng',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-07 17:13:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15881',
      pageId: 'math_3_examples',
      userId: 'JoeZeng',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-07 01:12:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15879',
      pageId: 'math_3_examples',
      userId: 'JoeZeng',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-07 01:10:19',
      auxPageId: 'math3',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15877',
      pageId: 'math_3_examples',
      userId: 'JoeZeng',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-07 01:09:50',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}