{ localUrl: '../page/math_join.html', arbitalUrl: 'https://arbital.com/p/math_join', rawJsonUrl: '../raw/3rc.json', likeableId: '2653', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'azoubd' ], pageId: 'math_join', edit: '46', editSummary: 'typo fix', prevEdit: '45', currentEdit: '46', wasPublished: 'true', type: 'wiki', title: 'Join and meet', clickbait: '', textLength: '2870', alias: 'math_join', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'KevinClancy', editCreatedAt: '2016-12-21 05:42:35', pageCreatorId: 'KevinClancy', pageCreatedAt: '2016-05-21 22:30:25', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '362', text: '[summary: Let $\\langle P, \\leq \\rangle$ be a [3rb poset], and let $S \\subseteq P$. The **join** of $S$ in $P$, denoted by $\\bigvee_P S$, is an element $p \\in P$ satisfying the following two properties:\n\n* p is an *upper bound* of $S$; that is, for all $s \\in S$, $s \\leq p$.\n* For all upper bounds $q$ of $S$ in $P$, $p \\leq q$.\n\n$\\bigvee_P S$ does not necessarily exist, but if it does then it is unique. The notation $\\bigvee S$ is typically used instead of $\\bigvee_P S$ when $P$ is clear from context. Joins are often called *least upper bounds* or *supremums*. For $a, b$ in $P$, the join of $\\{a,b\\}$ in $P$ is denoted by $a \\vee_P b$, or $a \\vee b$ when $P$ is clear from context. **Meets** are greatest lower bounds, and are related to joins by duality. \n]\n\nLet $\\langle P, \\leq \\rangle$ be a [-3rb], and let $S \\subseteq P$. The **join** of $S$ in $P$, denoted by $\\bigvee_P S$, is an element $p \\in P$ satisfying the following two properties:\n\n* p is an *upper bound* of $S$; that is, for all $s \\in S$, $s \\leq p$.\n* For all upper bounds $q$ of $S$ in $P$, $p \\leq q$.\n\n$\\bigvee_P S$ does not necessarily exist, but if it does then it is unique. The notation $\\bigvee S$ is typically used instead of $\\bigvee_P S$ when $P$ is clear from context. Joins are often called *least upper bounds* or *supremums*. For $a, b$ in $P$, the join of $\\{a,b\\}$ in $P$ is denoted by $a \\vee_P b$, or $a \\vee b$ when $P$ is clear from context.\n\nThe dual concept of the join is that of the meet. The **meet** of $S$ in $P$, denoted by $\\bigwedge_P S$, is defined an element $p \\in P$ satisfying.\n\n* p is a *lower bound* of $S$; that is, for all $s$ in $S$, $p \\leq s$.\n* For all lower bounds $q$ of $S$ in $P$, $q \\leq p$.\n\nMeets are also called *infimums*, or *greatest lower bounds*. The notations $\\bigwedge S$, $p \\wedge_P q$, and $p \\wedge q$ are all have meanings that are completely analogous to the aforementioned notations for joins. \n\nBasic example\n--------------------------\n\n![Joins Failing to exist in a finite lattice](http://i.imgur.com/sx1Ss9w.png)\n\nThe above Hasse diagram represents a poset with elements $a$, $b$, $c$, and $d$. $\\bigvee \\{a,b\\}$ does not exist because the set $\\{a,b\\}$ has no upper bounds. $\\bigvee \\{c,d\\}$ does not exist for a different reason: although $\\{c, d\\}$ has upper bounds $a$ and $b$, these upper bounds are incomparable, and so $\\{c, d\\}$ has no *least* upper bound. There do exist subsets of this poset which possess joins; for example, $a \\vee c = a$, $\\bigvee \\{b,c,d\\} = b$, and $\\bigvee \\{c\\} = c$.\n\nNow for some examples of meets. $\\bigwedge \\{a, b, c, d\\}$ does not exist because $c$ and $d$ have no common lower bounds. However, $\\bigwedge \\{a,b,d\\} = d$ and $a \\wedge c = c$.\n\nAdditional Material\n---------------------------------\n\n* [3v4 Examples]\n* [4ll Exercises]\n\nFurther reading\n---------------\n* [46c Lattices]\n', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: [ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0' ], muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: { Summary: 'Let $\\langle P, \\leq \\rangle$ be a [3rb poset], and let $S \\subseteq P$. The **join** of $S$ in $P$, denoted by $\\bigvee_P S$, is an element $p \\in P$ satisfying the following two properties:\n\n* p is an *upper bound* of $S$; that is, for all $s \\in S$, $s \\leq p$.\n* For all upper bounds $q$ of $S$ in $P$, $p \\leq q$.\n\n$\\bigvee_P S$ does not necessarily exist, but if it does then it is unique. The notation $\\bigvee S$ is typically used instead of $\\bigvee_P S$ when $P$ is clear from context. Joins are often called *least upper bounds* or *supremums*. For $a, b$ in $P$, the join of $\\{a,b\\}$ in $P$ is denoted by $a \\vee_P b$, or $a \\vee b$ when $P$ is clear from context. **Meets** are greatest lower bounds, and are related to joins by duality.' }, creatorIds: [ 'KevinClancy', 'EricBruylant' ], childIds: [ 'join_examples', 'poset_join_exercises' ], parentIds: [ 'order_theory' ], commentIds: [ '3rj' ], questionIds: [], tagIds: [ 'math2', 'b_class_meta_tag' ], relatedIds: [], markIds: [], explanations: [ { id: '5322', parentId: 'math_join', childId: 'math_join', type: 'subject', creatorId: 'KevinClancy', createdAt: '2016-07-16 19:24:41', level: '3', isStrong: 'true', everPublished: 'true' } ], learnMore: [], requirements: [ { id: '3328', parentId: 'poset', childId: 'math_join', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '3', isStrong: 'true', everPublished: 'true' } ], subjects: [ { id: '5322', parentId: 'math_join', childId: 'math_join', type: 'subject', creatorId: 'KevinClancy', createdAt: '2016-07-16 19:24:41', level: '3', isStrong: 'true', everPublished: 'true' } ], lenses: [ { id: '35', pageId: 'math_join', lensId: 'join_examples', lensIndex: '0', lensName: 'Examples', lensSubtitle: '', createdBy: '1', createdAt: '2016-06-17 21:58:56', updatedBy: '1', updatedAt: '2016-06-17 21:58:56' }, { id: '50', pageId: 'math_join', lensId: 'poset_join_exercises', lensIndex: '15', lensName: 'Exercises', lensSubtitle: '', createdBy: '299', createdAt: '2016-06-19 02:12:55', updatedBy: '299', updatedAt: '2016-06-19 02:12:55' } ], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '21025', pageId: 'math_join', userId: 'KevinClancy', edit: '46', type: 'newEdit', createdAt: '2016-12-21 05:42:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'typo fix' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20565', pageId: 'math_join', userId: 'KevinClancy', edit: '45', type: 'newEdit', createdAt: '2016-12-03 02:55:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19313', pageId: 'math_join', userId: 'EricBruylant', edit: '44', type: 'newEdit', createdAt: '2016-08-27 17:19:20', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'decapitalized link, slightly rearranged bottom section' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19312', pageId: 'math_join', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-08-27 17:11:32', auxPageId: 'definition_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19310', pageId: 'math_join', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-27 17:08:31', auxPageId: 'b_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19062', pageId: 'math_join', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-23 17:27:21', auxPageId: 'math2', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3089', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '16910', pageId: 'math_join', userId: 'KevinClancy', edit: '43', type: 'newEdit', createdAt: '2016-07-16 19:32:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16907', pageId: 'math_join', userId: 'KevinClancy', edit: '0', type: 'newTeacher', createdAt: '2016-07-16 19:24:42', auxPageId: 'math_join', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16908', pageId: 'math_join', userId: 'KevinClancy', edit: '0', type: 'newSubject', createdAt: '2016-07-16 19:24:42', auxPageId: 'math_join', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13982', pageId: 'math_join', userId: 'KevinClancy', edit: '0', type: 'newChild', createdAt: '2016-06-19 02:12:56', auxPageId: 'poset_join_exercises', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13744', pageId: 'math_join', userId: 'KevinClancy', edit: '42', type: 'newEdit', createdAt: '2016-06-17 22:54:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13739', pageId: 'math_join', userId: 'EricBruylant', edit: '41', type: 'newEdit', createdAt: '2016-06-17 21:53:53', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Removed top-line title' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13306', pageId: 'math_join', userId: 'KevinClancy', edit: '40', type: 'newEdit', createdAt: '2016-06-16 15:36:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13305', pageId: 'math_join', userId: 'KevinClancy', edit: '39', type: 'newEdit', createdAt: '2016-06-16 15:35:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13304', pageId: 'math_join', userId: 'KevinClancy', edit: '38', type: 'newEdit', createdAt: '2016-06-16 15:34:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13303', pageId: 'math_join', userId: 'KevinClancy', edit: '37', type: 'newEdit', createdAt: '2016-06-16 15:19:13', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12703', pageId: 'math_join', userId: 'KevinClancy', edit: '36', type: 'newEdit', createdAt: '2016-06-14 17:54:00', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12413', pageId: 'math_join', userId: 'KevinClancy', edit: '35', type: 'newRequiredBy', createdAt: '2016-06-11 16:19:42', auxPageId: 'order_lattice', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12404', pageId: 'math_join', userId: 'KevinClancy', edit: '35', type: 'newEdit', createdAt: '2016-06-11 15:51:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12327', pageId: 'math_join', userId: 'KevinClancy', edit: '34', type: 'newEdit', createdAt: '2016-06-10 15:35:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12326', pageId: 'math_join', userId: 'KevinClancy', edit: '33', type: 'newEdit', createdAt: '2016-06-10 15:34:32', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12325', pageId: 'math_join', userId: 'KevinClancy', edit: '32', type: 'newEdit', createdAt: '2016-06-10 15:33:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12324', pageId: 'math_join', userId: 'KevinClancy', edit: '31', type: 'newEdit', createdAt: '2016-06-10 15:32:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12323', pageId: 'math_join', userId: 'KevinClancy', edit: '30', type: 'newEdit', createdAt: '2016-06-10 15:31:27', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12322', pageId: 'math_join', userId: 'KevinClancy', edit: '29', type: 'newEdit', createdAt: '2016-06-10 15:29:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12320', pageId: 'math_join', userId: 'KevinClancy', edit: '28', type: 'newEdit', createdAt: '2016-06-10 15:27:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12319', pageId: 'math_join', userId: 'KevinClancy', edit: '27', type: 'newEdit', createdAt: '2016-06-10 15:26:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11398', pageId: 'math_join', userId: 'KevinClancy', edit: '26', type: 'newEdit', createdAt: '2016-05-28 19:53:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11150', pageId: 'math_join', userId: 'KevinClancy', edit: '25', type: 'newEdit', createdAt: '2016-05-27 02:51:41', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11145', pageId: 'math_join', userId: 'KevinClancy', edit: '24', type: 'newEdit', createdAt: '2016-05-27 02:44:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11143', pageId: 'math_join', userId: 'KevinClancy', edit: '23', type: 'newChild', createdAt: '2016-05-27 02:43:38', auxPageId: 'join_examples', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11111', pageId: 'math_join', userId: 'KevinClancy', edit: '23', type: 'newEdit', createdAt: '2016-05-27 00:13:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11108', pageId: 'math_join', userId: 'KevinClancy', edit: '22', type: 'newEdit', createdAt: '2016-05-27 00:11:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11107', pageId: 'math_join', userId: 'KevinClancy', edit: '21', type: 'newEdit', createdAt: '2016-05-27 00:07:22', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11100', pageId: 'math_join', userId: 'KevinClancy', edit: '20', type: 'newEdit', createdAt: '2016-05-26 23:56:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '11072', pageId: 'math_join', userId: 'KevinClancy', edit: '19', type: 'newEdit', createdAt: '2016-05-26 02:53:48', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10842', pageId: 'math_join', userId: 'KevinClancy', edit: '18', type: 'newEdit', createdAt: '2016-05-25 16:43:42', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10841', pageId: 'math_join', userId: 'KevinClancy', edit: '17', type: 'newEdit', createdAt: '2016-05-25 16:42:29', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10827', pageId: 'math_join', userId: 'KevinClancy', edit: '16', type: 'newEdit', createdAt: '2016-05-24 22:43:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10824', pageId: 'math_join', userId: 'KevinClancy', edit: '15', type: 'newEdit', createdAt: '2016-05-24 22:08:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10823', pageId: 'math_join', userId: 'KevinClancy', edit: '14', type: 'newEdit', createdAt: '2016-05-24 22:07:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10822', pageId: 'math_join', userId: 'KevinClancy', edit: '13', type: 'newEdit', createdAt: '2016-05-24 22:06:22', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10821', pageId: 'math_join', userId: 'KevinClancy', edit: '12', type: 'newEdit', createdAt: '2016-05-24 22:05:41', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10820', pageId: 'math_join', userId: 'KevinClancy', edit: '0', type: 'deleteTag', createdAt: '2016-05-24 22:03:22', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10816', pageId: 'math_join', userId: 'KevinClancy', edit: '11', type: 'newEdit', createdAt: '2016-05-24 21:56:34', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10815', pageId: 'math_join', userId: 'KevinClancy', edit: '10', type: 'newEdit', createdAt: '2016-05-24 21:30:51', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10813', pageId: 'math_join', userId: 'KevinClancy', edit: '9', type: 'newEdit', createdAt: '2016-05-23 02:05:34', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10812', pageId: 'math_join', userId: 'KevinClancy', edit: '8', type: 'newEdit', createdAt: '2016-05-23 01:36:49', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10811', pageId: 'math_join', userId: 'KevinClancy', edit: '7', type: 'newEdit', createdAt: '2016-05-23 01:19:17', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10810', pageId: 'math_join', userId: 'KevinClancy', edit: '6', type: 'newEdit', createdAt: '2016-05-22 22:30:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10809', pageId: 'math_join', userId: 'KevinClancy', edit: '5', type: 'newEdit', createdAt: '2016-05-22 22:26:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10808', pageId: 'math_join', userId: 'KevinClancy', edit: '4', type: 'newEdit', createdAt: '2016-05-22 22:24:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10807', pageId: 'math_join', userId: 'KevinClancy', edit: '3', type: 'newTag', createdAt: '2016-05-22 22:19:12', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10805', pageId: 'math_join', userId: 'KevinClancy', edit: '3', type: 'newEdit', createdAt: '2016-05-22 22:16:26', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10784', pageId: 'math_join', userId: 'KevinClancy', edit: '2', type: 'newEdit', createdAt: '2016-05-21 22:32:51', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10783', pageId: 'math_join', userId: 'KevinClancy', edit: '1', type: 'newEdit', createdAt: '2016-05-21 22:30:25', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10779', pageId: 'math_join', userId: 'KevinClancy', edit: '1', type: 'newRequirement', createdAt: '2016-05-21 22:30:04', auxPageId: 'poset', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10778', pageId: 'math_join', userId: 'KevinClancy', edit: '1', type: 'newTag', createdAt: '2016-05-21 22:29:56', auxPageId: 'definition_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '10777', pageId: 'math_join', userId: 'KevinClancy', edit: '1', type: 'newParent', createdAt: '2016-05-21 22:29:49', auxPageId: 'order_theory', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }