{
localUrl: '../page/math_join.html',
arbitalUrl: 'https://arbital.com/p/math_join',
rawJsonUrl: '../raw/3rc.json',
likeableId: '2653',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'azoubd'
],
pageId: 'math_join',
edit: '46',
editSummary: 'typo fix',
prevEdit: '45',
currentEdit: '46',
wasPublished: 'true',
type: 'wiki',
title: 'Join and meet',
clickbait: '',
textLength: '2870',
alias: 'math_join',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'KevinClancy',
editCreatedAt: '2016-12-21 05:42:35',
pageCreatorId: 'KevinClancy',
pageCreatedAt: '2016-05-21 22:30:25',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '362',
text: '[summary: Let $\\langle P, \\leq \\rangle$ be a [3rb poset], and let $S \\subseteq P$. The **join** of $S$ in $P$, denoted by $\\bigvee_P S$, is an element $p \\in P$ satisfying the following two properties:\n\n* p is an *upper bound* of $S$; that is, for all $s \\in S$, $s \\leq p$.\n* For all upper bounds $q$ of $S$ in $P$, $p \\leq q$.\n\n$\\bigvee_P S$ does not necessarily exist, but if it does then it is unique. The notation $\\bigvee S$ is typically used instead of $\\bigvee_P S$ when $P$ is clear from context. Joins are often called *least upper bounds* or *supremums*. For $a, b$ in $P$, the join of $\\{a,b\\}$ in $P$ is denoted by $a \\vee_P b$, or $a \\vee b$ when $P$ is clear from context. **Meets** are greatest lower bounds, and are related to joins by duality. \n]\n\nLet $\\langle P, \\leq \\rangle$ be a [-3rb], and let $S \\subseteq P$. The **join** of $S$ in $P$, denoted by $\\bigvee_P S$, is an element $p \\in P$ satisfying the following two properties:\n\n* p is an *upper bound* of $S$; that is, for all $s \\in S$, $s \\leq p$.\n* For all upper bounds $q$ of $S$ in $P$, $p \\leq q$.\n\n$\\bigvee_P S$ does not necessarily exist, but if it does then it is unique. The notation $\\bigvee S$ is typically used instead of $\\bigvee_P S$ when $P$ is clear from context. Joins are often called *least upper bounds* or *supremums*. For $a, b$ in $P$, the join of $\\{a,b\\}$ in $P$ is denoted by $a \\vee_P b$, or $a \\vee b$ when $P$ is clear from context.\n\nThe dual concept of the join is that of the meet. The **meet** of $S$ in $P$, denoted by $\\bigwedge_P S$, is defined an element $p \\in P$ satisfying.\n\n* p is a *lower bound* of $S$; that is, for all $s$ in $S$, $p \\leq s$.\n* For all lower bounds $q$ of $S$ in $P$, $q \\leq p$.\n\nMeets are also called *infimums*, or *greatest lower bounds*. The notations $\\bigwedge S$, $p \\wedge_P q$, and $p \\wedge q$ are all have meanings that are completely analogous to the aforementioned notations for joins. \n\nBasic example\n--------------------------\n\n\n\nThe above Hasse diagram represents a poset with elements $a$, $b$, $c$, and $d$. $\\bigvee \\{a,b\\}$ does not exist because the set $\\{a,b\\}$ has no upper bounds. $\\bigvee \\{c,d\\}$ does not exist for a different reason: although $\\{c, d\\}$ has upper bounds $a$ and $b$, these upper bounds are incomparable, and so $\\{c, d\\}$ has no *least* upper bound. There do exist subsets of this poset which possess joins; for example, $a \\vee c = a$, $\\bigvee \\{b,c,d\\} = b$, and $\\bigvee \\{c\\} = c$.\n\nNow for some examples of meets. $\\bigwedge \\{a, b, c, d\\}$ does not exist because $c$ and $d$ have no common lower bounds. However, $\\bigwedge \\{a,b,d\\} = d$ and $a \\wedge c = c$.\n\nAdditional Material\n---------------------------------\n\n* [3v4 Examples]\n* [4ll Exercises]\n\nFurther reading\n---------------\n* [46c Lattices]\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'Let $\\langle P, \\leq \\rangle$ be a [3rb poset], and let $S \\subseteq P$. The **join** of $S$ in $P$, denoted by $\\bigvee_P S$, is an element $p \\in P$ satisfying the following two properties:\n\n* p is an *upper bound* of $S$; that is, for all $s \\in S$, $s \\leq p$.\n* For all upper bounds $q$ of $S$ in $P$, $p \\leq q$.\n\n$\\bigvee_P S$ does not necessarily exist, but if it does then it is unique. The notation $\\bigvee S$ is typically used instead of $\\bigvee_P S$ when $P$ is clear from context. Joins are often called *least upper bounds* or *supremums*. For $a, b$ in $P$, the join of $\\{a,b\\}$ in $P$ is denoted by $a \\vee_P b$, or $a \\vee b$ when $P$ is clear from context. **Meets** are greatest lower bounds, and are related to joins by duality.'
},
creatorIds: [
'KevinClancy',
'EricBruylant'
],
childIds: [
'join_examples',
'poset_join_exercises'
],
parentIds: [
'order_theory'
],
commentIds: [
'3rj'
],
questionIds: [],
tagIds: [
'math2',
'b_class_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [
{
id: '5322',
parentId: 'math_join',
childId: 'math_join',
type: 'subject',
creatorId: 'KevinClancy',
createdAt: '2016-07-16 19:24:41',
level: '3',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [
{
id: '3328',
parentId: 'poset',
childId: 'math_join',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '3',
isStrong: 'true',
everPublished: 'true'
}
],
subjects: [
{
id: '5322',
parentId: 'math_join',
childId: 'math_join',
type: 'subject',
creatorId: 'KevinClancy',
createdAt: '2016-07-16 19:24:41',
level: '3',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [
{
id: '35',
pageId: 'math_join',
lensId: 'join_examples',
lensIndex: '0',
lensName: 'Examples',
lensSubtitle: '',
createdBy: '1',
createdAt: '2016-06-17 21:58:56',
updatedBy: '1',
updatedAt: '2016-06-17 21:58:56'
},
{
id: '50',
pageId: 'math_join',
lensId: 'poset_join_exercises',
lensIndex: '15',
lensName: 'Exercises',
lensSubtitle: '',
createdBy: '299',
createdAt: '2016-06-19 02:12:55',
updatedBy: '299',
updatedAt: '2016-06-19 02:12:55'
}
],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21025',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '46',
type: 'newEdit',
createdAt: '2016-12-21 05:42:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'typo fix'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20565',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '45',
type: 'newEdit',
createdAt: '2016-12-03 02:55:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19313',
pageId: 'math_join',
userId: 'EricBruylant',
edit: '44',
type: 'newEdit',
createdAt: '2016-08-27 17:19:20',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'decapitalized link, slightly rearranged bottom section'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19312',
pageId: 'math_join',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-08-27 17:11:32',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19310',
pageId: 'math_join',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-27 17:08:31',
auxPageId: 'b_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19062',
pageId: 'math_join',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-23 17:27:21',
auxPageId: 'math2',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3089',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '16910',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '43',
type: 'newEdit',
createdAt: '2016-07-16 19:32:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16907',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '0',
type: 'newTeacher',
createdAt: '2016-07-16 19:24:42',
auxPageId: 'math_join',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16908',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '0',
type: 'newSubject',
createdAt: '2016-07-16 19:24:42',
auxPageId: 'math_join',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13982',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '0',
type: 'newChild',
createdAt: '2016-06-19 02:12:56',
auxPageId: 'poset_join_exercises',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13744',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '42',
type: 'newEdit',
createdAt: '2016-06-17 22:54:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13739',
pageId: 'math_join',
userId: 'EricBruylant',
edit: '41',
type: 'newEdit',
createdAt: '2016-06-17 21:53:53',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'Removed top-line title'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13306',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '40',
type: 'newEdit',
createdAt: '2016-06-16 15:36:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13305',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '39',
type: 'newEdit',
createdAt: '2016-06-16 15:35:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13304',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '38',
type: 'newEdit',
createdAt: '2016-06-16 15:34:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13303',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '37',
type: 'newEdit',
createdAt: '2016-06-16 15:19:13',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12703',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '36',
type: 'newEdit',
createdAt: '2016-06-14 17:54:00',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12413',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '35',
type: 'newRequiredBy',
createdAt: '2016-06-11 16:19:42',
auxPageId: 'order_lattice',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12404',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '35',
type: 'newEdit',
createdAt: '2016-06-11 15:51:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12327',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '34',
type: 'newEdit',
createdAt: '2016-06-10 15:35:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12326',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '33',
type: 'newEdit',
createdAt: '2016-06-10 15:34:32',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12325',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '32',
type: 'newEdit',
createdAt: '2016-06-10 15:33:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12324',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '31',
type: 'newEdit',
createdAt: '2016-06-10 15:32:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12323',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '30',
type: 'newEdit',
createdAt: '2016-06-10 15:31:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12322',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '29',
type: 'newEdit',
createdAt: '2016-06-10 15:29:56',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12320',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '28',
type: 'newEdit',
createdAt: '2016-06-10 15:27:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12319',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '27',
type: 'newEdit',
createdAt: '2016-06-10 15:26:39',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11398',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '26',
type: 'newEdit',
createdAt: '2016-05-28 19:53:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11150',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '25',
type: 'newEdit',
createdAt: '2016-05-27 02:51:41',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11145',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '24',
type: 'newEdit',
createdAt: '2016-05-27 02:44:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11143',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '23',
type: 'newChild',
createdAt: '2016-05-27 02:43:38',
auxPageId: 'join_examples',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11111',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '23',
type: 'newEdit',
createdAt: '2016-05-27 00:13:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11108',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '22',
type: 'newEdit',
createdAt: '2016-05-27 00:11:26',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11107',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '21',
type: 'newEdit',
createdAt: '2016-05-27 00:07:22',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11100',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '20',
type: 'newEdit',
createdAt: '2016-05-26 23:56:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '11072',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '19',
type: 'newEdit',
createdAt: '2016-05-26 02:53:48',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10842',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '18',
type: 'newEdit',
createdAt: '2016-05-25 16:43:42',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10841',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '17',
type: 'newEdit',
createdAt: '2016-05-25 16:42:29',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10827',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '16',
type: 'newEdit',
createdAt: '2016-05-24 22:43:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10824',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '15',
type: 'newEdit',
createdAt: '2016-05-24 22:08:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10823',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '14',
type: 'newEdit',
createdAt: '2016-05-24 22:07:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10822',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '13',
type: 'newEdit',
createdAt: '2016-05-24 22:06:22',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10821',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '12',
type: 'newEdit',
createdAt: '2016-05-24 22:05:41',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10820',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '0',
type: 'deleteTag',
createdAt: '2016-05-24 22:03:22',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10816',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '11',
type: 'newEdit',
createdAt: '2016-05-24 21:56:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10815',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '10',
type: 'newEdit',
createdAt: '2016-05-24 21:30:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10813',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '9',
type: 'newEdit',
createdAt: '2016-05-23 02:05:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10812',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '8',
type: 'newEdit',
createdAt: '2016-05-23 01:36:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10811',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '7',
type: 'newEdit',
createdAt: '2016-05-23 01:19:17',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10810',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '6',
type: 'newEdit',
createdAt: '2016-05-22 22:30:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10809',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '5',
type: 'newEdit',
createdAt: '2016-05-22 22:26:26',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10808',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '4',
type: 'newEdit',
createdAt: '2016-05-22 22:24:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10807',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '3',
type: 'newTag',
createdAt: '2016-05-22 22:19:12',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10805',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '3',
type: 'newEdit',
createdAt: '2016-05-22 22:16:26',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10784',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '2',
type: 'newEdit',
createdAt: '2016-05-21 22:32:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10783',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '1',
type: 'newEdit',
createdAt: '2016-05-21 22:30:25',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10779',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '1',
type: 'newRequirement',
createdAt: '2016-05-21 22:30:04',
auxPageId: 'poset',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10778',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '1',
type: 'newTag',
createdAt: '2016-05-21 22:29:56',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10777',
pageId: 'math_join',
userId: 'KevinClancy',
edit: '1',
type: 'newParent',
createdAt: '2016-05-21 22:29:49',
auxPageId: 'order_theory',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}