{ localUrl: '../page/n_digit.html', arbitalUrl: 'https://arbital.com/p/n_digit', rawJsonUrl: '../raw/4sj.json', likeableId: '2844', likeableType: 'page', myLikeValue: '0', likeCount: '3', dislikeCount: '0', likeScore: '3', individualLikes: [ 'JaimeSevillaMolina', 'EricRogstad', 'SzymonWilczyski' ], pageId: 'n_digit', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'n-digit', clickbait: '', textLength: '1474', alias: 'n_digit', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'NateSoares', editCreatedAt: '2016-06-24 04:58:44', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-06-24 04:58:44', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '34', text: 'An $n$-digit is a physical object that can be stably placed into any of $n$ distinguishable states. For example, a coin (which can be placed heads or tails) and a single bit of memory on a computer (which either has a high volt level or a low volt level) are both examples of 2-digits. A [-42d] is an example of a 10-digit. One die is an example of a 6-digit; two dice together are an example of a 36-digit (because they can be placed in 36 different ways).\n\nWhat does and doesn't count as an $n$-digit depends on context and convention: For example, if you want to communicate a message to me by placing a penny heads-side up and choosing whether to point Abraham Lincoln's face either north, south, east, or west, then, for the purposes of the two of us, that penny is a 4-digit rather than a 2-digit. The definition of "stably placed" is also a bit up-for-grabs: If you're writing a computer program and need to store a [3v9 256-message] in short-term memory, then a byte of RAM will do, but if you need to store the same 256-message for a long period of time, you may need to use a less temporary 256-digit (such as a hard drive).\n\nNote that it's possible to emulate $m$-digits using $n$-digits, in general. If $m < n$ then an $n$-digit is trivially an $m$-digit (i.e., you can use a digit wheel like a 7-digit in a pinch), and if $m > n$ then, given enough $n$-digits, you can make do. For example, 3 coins can be used to encode an 8-digit. See also [emulating_digits].', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'NateSoares' ], childIds: [], parentIds: [ 'math' ], commentIds: [], questionIds: [], tagIds: [ 'nonstandard_terminology_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14554', pageId: 'n_digit', userId: 'NateSoares', edit: '0', type: 'newTag', createdAt: '2016-06-24 04:58:45', auxPageId: 'nonstandard_terminology_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14556', pageId: 'n_digit', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-06-24 04:58:45', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14553', pageId: 'n_digit', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-06-24 04:58:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }