{
localUrl: '../page/natural_number.html',
arbitalUrl: 'https://arbital.com/p/natural_number',
rawJsonUrl: '../raw/45h.json',
likeableId: '2654',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricRogstad'
],
pageId: 'natural_number',
edit: '11',
editSummary: '',
prevEdit: '10',
currentEdit: '11',
wasPublished: 'true',
type: 'wiki',
title: 'Natural number',
clickbait: 'The numbers we use to count: 0, 1, 2, 3, ...',
textLength: '1592',
alias: 'natural_number',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'MartinEpstein',
editCreatedAt: '2016-12-22 06:39:50',
pageCreatorId: 'JaimeSevillaMolina',
pageCreatedAt: '2016-06-12 08:43:34',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '1',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '102',
text: '[summary: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...\n\nThe natural numbers are the numbers we use to count things.]\n\nA **natural number** is a number like 0, 1, 2, 3, 4, 5, 6, ... which can be used to represent the count of an object. The set of natural numbers is $\\mathbb N.$ Not all sources include 0 in $\\mathbb N.$\n\nNatural numbers are perhaps the simplest type of number. They don't include [48l negative numbers], [4zq fractional numbers], [4bc irrational numbers], [4zw imaginary numbers], or any of those complexities.\n\nThanks to their simplicity, natural numbers are often the first mathematical concept taught to children. Natural numbers are equipped with a notion of [-addition] ($2 + 3 = 5$ and so on) and [-multiplication] ($2 \\cdot 3 = 6$ and so on), these are among the first mathematical operations taught to children.\n\nDespite their simplicity, the natural numbers are a ubiquitous and useful mathematical object. They're quite useful for counting things. They represent all the possible [4w5 cardinalities] of finite [3jz sets]. They're also a useful [data_structure data structure], in that numbers can be used to [numeric_encoding encode] all sorts of data. Almost all of modern mathematics can be built out of natural numbers.\n\n[todo: Add a "formalization" lens with the Peano axioms. I recommend at least one page with just the raw Peano axioms (and very little prose), and another gentler introduction sort of like http://bit.ly/29glDrR and http://bit.ly/29nKYAL, albeit more to-the-point and probably without going all the way up to non-standard number territory.]',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JoeZeng',
'PatrickStevens',
'NateSoares',
'JaimeSevillaMolina',
'EricRogstad',
'MartinEpstein'
],
childIds: [
'grahams_number',
'googolplex',
'googol',
'prime_number'
],
parentIds: [
'math'
],
commentIds: [],
questionIds: [],
tagIds: [
'start_meta_tag',
'definition_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '3859',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '21050',
pageId: 'natural_number',
userId: 'MartinEpstein',
edit: '11',
type: 'newEdit',
createdAt: '2016-12-22 06:39:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19037',
pageId: 'natural_number',
userId: 'JoeZeng',
edit: '0',
type: 'deleteChild',
createdAt: '2016-08-20 15:44:33',
auxPageId: 'natural_number_numbersets',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19009',
pageId: 'natural_number',
userId: 'EricBruylant',
edit: '0',
type: 'newChild',
createdAt: '2016-08-20 13:20:45',
auxPageId: 'grahams_number',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18971',
pageId: 'natural_number',
userId: 'EricBruylant',
edit: '0',
type: 'newChild',
createdAt: '2016-08-20 13:03:23',
auxPageId: 'googolplex',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18967',
pageId: 'natural_number',
userId: 'EricBruylant',
edit: '0',
type: 'newChild',
createdAt: '2016-08-20 13:03:07',
auxPageId: 'googol',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3010',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '16102',
pageId: 'natural_number',
userId: 'JoeZeng',
edit: '10',
type: 'newEdit',
createdAt: '2016-07-07 23:38:29',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15695',
pageId: 'natural_number',
userId: 'JoeZeng',
edit: '9',
type: 'newEdit',
createdAt: '2016-07-06 15:06:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15672',
pageId: 'natural_number',
userId: 'JoeZeng',
edit: '8',
type: 'newEdit',
createdAt: '2016-07-06 14:50:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'Try not to use "whole number" anywhere; that term is poorly defined.'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15516',
pageId: 'natural_number',
userId: 'JoeZeng',
edit: '0',
type: 'newChild',
createdAt: '2016-07-05 23:15:38',
auxPageId: 'natural_number_numbersets',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15229',
pageId: 'natural_number',
userId: 'NateSoares',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-04 06:47:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15228',
pageId: 'natural_number',
userId: 'NateSoares',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-04 06:44:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15227',
pageId: 'natural_number',
userId: 'NateSoares',
edit: '0',
type: 'newTag',
createdAt: '2016-07-04 06:44:45',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15226',
pageId: 'natural_number',
userId: 'NateSoares',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-04 06:44:34',
auxPageId: 'stub_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14773',
pageId: 'natural_number',
userId: 'JoeZeng',
edit: '5',
type: 'newEdit',
createdAt: '2016-06-29 01:16:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14077',
pageId: 'natural_number',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-06-20 08:46:09',
auxPageId: 'prime_number',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '2659',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [],
id: '12527',
pageId: 'natural_number',
userId: 'PatrickStevens',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-13 11:56:26',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '2658',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [],
id: '12526',
pageId: 'natural_number',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-13 11:54:38',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12505',
pageId: 'natural_number',
userId: 'EricRogstad',
edit: '2',
type: 'newTag',
createdAt: '2016-06-12 23:47:50',
auxPageId: 'stub_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12501',
pageId: 'natural_number',
userId: 'EricRogstad',
edit: '2',
type: 'newTag',
createdAt: '2016-06-12 19:16:14',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12499',
pageId: 'natural_number',
userId: 'EricRogstad',
edit: '2',
type: 'newParent',
createdAt: '2016-06-12 19:15:37',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12497',
pageId: 'natural_number',
userId: 'EricRogstad',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-12 19:15:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12488',
pageId: 'natural_number',
userId: 'JaimeSevillaMolina',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-12 08:43:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}