{
localUrl: '../page/normalize_probabilities.html',
arbitalUrl: 'https://arbital.com/p/normalize_probabilities',
rawJsonUrl: '../raw/1rk.json',
likeableId: '703',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'SzymonWilczyski',
'StephanieKoo'
],
pageId: 'normalize_probabilities',
edit: '11',
editSummary: '',
prevEdit: '10',
currentEdit: '11',
wasPublished: 'true',
type: 'wiki',
title: 'Normalization (probability)',
clickbait: 'That thingy we do to make sure our probabilities sum to 1, when they should sum to 1.',
textLength: '2798',
alias: 'normalize_probabilities',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EliezerYudkowsky',
editCreatedAt: '2016-10-07 23:37:30',
pageCreatorId: 'EliezerYudkowsky',
pageCreatedAt: '2016-01-27 00:20:57',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '386',
text: '[summary: "Normalization" obtains a set of [1rf probabilities] summing to 1, in [1rd cases where they ought to sum to 1]. We do this by dividing each pre-normalized number by the sum of all pre-normalized numbers.\n\nSuppose the [1rb odds] of Alexander Hamilton winning an election are 3 : 2. We think the proportions are right (Alexander is 1.5 times as likely to win as not win) but we want *probabilities*. To say that Hamilton has probability 3 of winning the election would be very strange indeed. But if we divide each of the terms by the sum of all the terms, they'll end up summing to one: $3:2 \\cong \\frac{3}{3+2} : \\frac{2}{3+2} = 0.6 : 0.4.$ Thus, the probability that Hamilton wins is 60%.]\n\n"Normalization" is an arithmetical procedure carried out to obtain a set of [1rf probabilities] summing to exactly 1, in cases where we believe that [1rd exactly one of the corresponding possibilities is true], and we already know the [1rb relative probabilities].\n\nFor example, suppose that the [1rb odds] of Alexander Hamilton winning a presidential election are 3 : 2. But Alexander Hamilton must either win or not win, so the *probabilities* of him winning *or* not winning should sum to 1. If we just add 3 and 2, however, we get 5, which is an unreasonably large probability.\n\nIf we rewrite the odds as 0.6 : 0.4, we've preserved the same proportions, but made the terms sum to 1. We therefore calculate that Hamilton has a 60% probability of winning the election.\n\nWe normalized those odds by dividing each of the terms by the sum of terms, i.e., went from 3 : 2 to $\\frac{3}{3+2} : \\frac{2}{3+2} = 0.6 : 0.4.$\n\nIn converting the odds $m : n$ to $\\frac{m}{m+n} : \\frac{n}{m+n},$ the factor $\\frac{1}{m+n}$ by which we multiply all elements of the ratio is called a [https://en.wikipedia.org/wiki/Normalizing_constant normalizing constant].\n\nMore generally, if we have a relative-odds function $\\mathbb{O}(H)$ where $H$ has many components, and we want to convert this to a probability function $\\mathbb{P}(H)$ that sums to 1, we divide every element of $\\mathbb{O}(H)$ by the sum of all elements in $\\mathbb{O}(H).$ That is:\n\n$\\mathbb{P}(H_i) = \\frac{\\mathbb{O}(H_i)}{\\sum_i \\mathbb{O}(H_i)}$\n\nAnalogously, if $\\mathbb{O}(x)$ is a continuous distribution on $X$, we would normalize it (create a proportional probability function $\\mathbb{P}(x)$ whose integral is equal to 1) by dividing $\\mathbb{O}(x)$ by its own integral:\n\n$\\mathbb{P}(x) = \\frac{\\mathbb{O}(x)}{\\int \\mathbb{O}(x) \\operatorname{d}x}$\n\nIn general, whenever a probability function on a variable is *proportional* to some other function, we can obtain the probability function by *normalizing* that function:\n\n$\\mathbb{P}(H) \\propto \\mathbb{O}(H) \\implies \\mathbb{P}(H) = \\frac{\\mathbb{O}(H)}{\\sum \\mathbb{O}(H)}$',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '2016-02-17 11:11:11',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'EliezerYudkowsky'
],
childIds: [],
parentIds: [
'probability_theory'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '1889',
parentId: 'math1',
childId: 'normalize_probabilities',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19910',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '11',
type: 'newEdit',
createdAt: '2016-10-07 23:37:30',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '6037',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '10',
type: 'newEdit',
createdAt: '2016-02-01 23:04:48',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5766',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '9',
type: 'newEdit',
createdAt: '2016-01-27 00:35:52',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5765',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '8',
type: 'newEdit',
createdAt: '2016-01-27 00:35:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5764',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '7',
type: 'newEdit',
createdAt: '2016-01-27 00:34:39',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5763',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '6',
type: 'newEdit',
createdAt: '2016-01-27 00:33:48',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5762',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '5',
type: 'newEdit',
createdAt: '2016-01-27 00:30:30',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5761',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '4',
type: 'newEdit',
createdAt: '2016-01-27 00:23:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5760',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '3',
type: 'newEdit',
createdAt: '2016-01-27 00:21:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5759',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '2',
type: 'newEdit',
createdAt: '2016-01-27 00:21:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5758',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '1',
type: 'newEdit',
createdAt: '2016-01-27 00:20:57',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5757',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newRequirement',
createdAt: '2016-01-27 00:03:40',
auxPageId: 'math1',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5755',
pageId: 'normalize_probabilities',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newParent',
createdAt: '2016-01-27 00:03:25',
auxPageId: 'probability_theory',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}