{ localUrl: '../page/normalize_probabilities.html', arbitalUrl: 'https://arbital.com/p/normalize_probabilities', rawJsonUrl: '../raw/1rk.json', likeableId: '703', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'SzymonWilczyski', 'StephanieKoo' ], pageId: 'normalize_probabilities', edit: '11', editSummary: '', prevEdit: '10', currentEdit: '11', wasPublished: 'true', type: 'wiki', title: 'Normalization (probability)', clickbait: 'That thingy we do to make sure our probabilities sum to 1, when they should sum to 1.', textLength: '2798', alias: 'normalize_probabilities', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EliezerYudkowsky', editCreatedAt: '2016-10-07 23:37:30', pageCreatorId: 'EliezerYudkowsky', pageCreatedAt: '2016-01-27 00:20:57', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '386', text: '[summary: "Normalization" obtains a set of [1rf probabilities] summing to 1, in [1rd cases where they ought to sum to 1]. We do this by dividing each pre-normalized number by the sum of all pre-normalized numbers.\n\nSuppose the [1rb odds] of Alexander Hamilton winning an election are 3 : 2. We think the proportions are right (Alexander is 1.5 times as likely to win as not win) but we want *probabilities*. To say that Hamilton has probability 3 of winning the election would be very strange indeed. But if we divide each of the terms by the sum of all the terms, they'll end up summing to one: $3:2 \\cong \\frac{3}{3+2} : \\frac{2}{3+2} = 0.6 : 0.4.$ Thus, the probability that Hamilton wins is 60%.]\n\n"Normalization" is an arithmetical procedure carried out to obtain a set of [1rf probabilities] summing to exactly 1, in cases where we believe that [1rd exactly one of the corresponding possibilities is true], and we already know the [1rb relative probabilities].\n\nFor example, suppose that the [1rb odds] of Alexander Hamilton winning a presidential election are 3 : 2. But Alexander Hamilton must either win or not win, so the *probabilities* of him winning *or* not winning should sum to 1. If we just add 3 and 2, however, we get 5, which is an unreasonably large probability.\n\nIf we rewrite the odds as 0.6 : 0.4, we've preserved the same proportions, but made the terms sum to 1. We therefore calculate that Hamilton has a 60% probability of winning the election.\n\nWe normalized those odds by dividing each of the terms by the sum of terms, i.e., went from 3 : 2 to $\\frac{3}{3+2} : \\frac{2}{3+2} = 0.6 : 0.4.$\n\nIn converting the odds $m : n$ to $\\frac{m}{m+n} : \\frac{n}{m+n},$ the factor $\\frac{1}{m+n}$ by which we multiply all elements of the ratio is called a [https://en.wikipedia.org/wiki/Normalizing_constant normalizing constant].\n\nMore generally, if we have a relative-odds function $\\mathbb{O}(H)$ where $H$ has many components, and we want to convert this to a probability function $\\mathbb{P}(H)$ that sums to 1, we divide every element of $\\mathbb{O}(H)$ by the sum of all elements in $\\mathbb{O}(H).$ That is:\n\n$\\mathbb{P}(H_i) = \\frac{\\mathbb{O}(H_i)}{\\sum_i \\mathbb{O}(H_i)}$\n\nAnalogously, if $\\mathbb{O}(x)$ is a continuous distribution on $X$, we would normalize it (create a proportional probability function $\\mathbb{P}(x)$ whose integral is equal to 1) by dividing $\\mathbb{O}(x)$ by its own integral:\n\n$\\mathbb{P}(x) = \\frac{\\mathbb{O}(x)}{\\int \\mathbb{O}(x) \\operatorname{d}x}$\n\nIn general, whenever a probability function on a variable is *proportional* to some other function, we can obtain the probability function by *normalizing* that function:\n\n$\\mathbb{P}(H) \\propto \\mathbb{O}(H) \\implies \\mathbb{P}(H) = \\frac{\\mathbb{O}(H)}{\\sum \\mathbb{O}(H)}$', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '2016-02-17 11:11:11', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'EliezerYudkowsky' ], childIds: [], parentIds: [ 'probability_theory' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '1889', parentId: 'math1', childId: 'normalize_probabilities', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19910', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '11', type: 'newEdit', createdAt: '2016-10-07 23:37:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '6037', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '10', type: 'newEdit', createdAt: '2016-02-01 23:04:48', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5766', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '9', type: 'newEdit', createdAt: '2016-01-27 00:35:52', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5765', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '8', type: 'newEdit', createdAt: '2016-01-27 00:35:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5764', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '7', type: 'newEdit', createdAt: '2016-01-27 00:34:39', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5763', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '6', type: 'newEdit', createdAt: '2016-01-27 00:33:48', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5762', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '5', type: 'newEdit', createdAt: '2016-01-27 00:30:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5761', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '4', type: 'newEdit', createdAt: '2016-01-27 00:23:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5760', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '3', type: 'newEdit', createdAt: '2016-01-27 00:21:36', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5759', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '2', type: 'newEdit', createdAt: '2016-01-27 00:21:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5758', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '1', type: 'newEdit', createdAt: '2016-01-27 00:20:57', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5757', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '0', type: 'newRequirement', createdAt: '2016-01-27 00:03:40', auxPageId: 'math1', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '5755', pageId: 'normalize_probabilities', userId: 'EliezerYudkowsky', edit: '0', type: 'newParent', createdAt: '2016-01-27 00:03:25', auxPageId: 'probability_theory', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }