{ localUrl: '../page/number_sets_intro.html', arbitalUrl: 'https://arbital.com/p/number_sets_intro', rawJsonUrl: '../raw/544.json', likeableId: '2961', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'EricRogstad' ], pageId: 'number_sets_intro', edit: '4', editSummary: '', prevEdit: '3', currentEdit: '4', wasPublished: 'true', type: 'wiki', title: 'Intro to Number Sets', clickbait: 'An introduction to number sets for people who have no idea what a number set is.', textLength: '2171', alias: 'number_sets_intro', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'JoeZeng', editCreatedAt: '2016-08-20 16:27:36', pageCreatorId: 'JoeZeng', pageCreatedAt: '2016-07-05 23:53:25', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '35', text: 'There are several common [3jz sets] of [54y numbers] that mathematicians use in their studies. In order from simple to complex, they are:\n\n1. The [506 natural numbers] $\\mathbb{N}$\n\n2. The [53r integers] $\\mathbb{Z}$\n\n3. The [rational_number_math0 rational numbers] $\\mathbb{Q}$\n\n4. The [real_number_math0 real numbers] $\\mathbb{R}$\n\n5. The [complex_number_math0 complex numbers] $\\mathbb{C}$\n\nEach set is constructed in some way from the previous one, and this path will show you how they are constructed from the most basic numbers. You may have come across these terms in a math class that you attended, and may have had other definitions given to you. In this path, you will obtain a firm, complete understanding of these sets, how they are constructed, and what they mean in mathematics.\n\n\n## Why are number sets important?\n\nBefore we go any further though, it would be nice to know the motivation behind defining the number sets first.\n\nA [3jz set] is a fancy name for a collection of objects. Some collections of objects have special properties — such as the set of all blue things, which are special in that they're all blue. In math, if a set of objects all have a certain property, we can make **inferences** about them — that is, there are certain things we can say about them that you can deduce logically. For example:\n\n> In a [481 field], every nonzero number has a multiplicative inverse.\n\nYou don't need to know what a field is yet (it's a special type of set), but now you can make inferences about them without restricting yourself to a specific example when talking about them. For example, you know that if a set _is_ a field, then every number in that set that isn't zero can divide into another number in that set (by multiplying by its "multiplicative inverse") and produce yet another number in that set.\n\nConversely, you can also tell when a set is or isn't a field based on whether it satisfies the properties a field has. For example, since you can't divide $3$ by $2$ (because the result is $1.5$ which is not a natural number), you now know that the natural numbers are not a field.\n\n\nNow let's turn to our first set: the natural numbers.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'JoeZeng' ], childIds: [], parentIds: [ 'math' ], commentIds: [], questionIds: [], tagIds: [ 'stub_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [ { id: '18', guideId: 'number_sets_intro', pathPageId: 'natural_number_numbersets', pathIndex: '0', createdBy: '4tg', createdAt: '2016-07-06 03:25:16', updatedBy: '4tg', updatedAt: '2016-07-06 03:25:16' }, { id: '19', guideId: 'number_sets_intro', pathPageId: 'integers_intro_math0', pathIndex: '1', createdBy: '4tg', createdAt: '2016-07-06 03:25:25', updatedBy: '4tg', updatedAt: '2016-07-06 03:25:25' }, { id: '20', guideId: 'number_sets_intro', pathPageId: 'rational_numbers_intro_math_0', pathIndex: '2', createdBy: '4tg', createdAt: '2016-07-06 03:25:33', updatedBy: '4tg', updatedAt: '2016-07-06 03:25:33' } ], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19039', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'newAlias', createdAt: '2016-08-20 16:27:36', auxPageId: '', oldSettingsValue: 'number_sets_math0', newSettingsValue: 'number_sets_intro' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19040', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '4', type: 'newEdit', createdAt: '2016-08-20 16:27:36', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15775', pageId: 'number_sets_intro', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-06 20:43:05', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15671', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '3', type: 'newEdit', createdAt: '2016-07-06 14:43:17', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15669', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'newAlias', createdAt: '2016-07-06 14:42:49', auxPageId: '', oldSettingsValue: '544', newSettingsValue: 'number_sets_math0' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15670', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '2', type: 'newEdit', createdAt: '2016-07-06 14:42:49', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15568', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'deleteChild', createdAt: '2016-07-06 03:25:11', auxPageId: 'rational_numbers_intro_math_0', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15566', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'deleteChild', createdAt: '2016-07-06 03:25:10', auxPageId: 'integers_intro_math0', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15564', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'deleteChild', createdAt: '2016-07-06 03:25:09', auxPageId: 'natural_number_numbersets', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15562', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'newChild', createdAt: '2016-07-06 03:24:49', auxPageId: 'rational_numbers_intro_math_0', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15560', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'newChild', createdAt: '2016-07-06 03:24:44', auxPageId: 'integers_intro_math0', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15558', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'newChild', createdAt: '2016-07-06 03:24:36', auxPageId: 'natural_number_numbersets', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15557', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '0', type: 'newTag', createdAt: '2016-07-06 03:24:21', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15524', pageId: 'number_sets_intro', userId: 'JoeZeng', edit: '1', type: 'newEdit', createdAt: '2016-07-05 23:53:25', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }