{
localUrl: '../page/odds_refresher.html',
arbitalUrl: 'https://arbital.com/p/odds_refresher',
rawJsonUrl: '../raw/562.json',
likeableId: '2983',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'NateSoares'
],
pageId: 'odds_refresher',
edit: '6',
editSummary: '',
prevEdit: '5',
currentEdit: '6',
wasPublished: 'true',
type: 'wiki',
title: 'Odds: Refresher',
clickbait: 'A quick review of the notations and mathematical behaviors for odds (e.g. odds of 1 : 2 for drawing a red ball vs. green ball from a barrel).',
textLength: '1579',
alias: 'odds_refresher',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EliezerYudkowsky',
editCreatedAt: '2016-10-13 00:38:46',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-07-06 22:47:56',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '230',
text: 'Let's say that, in a certain forest, there are 2 sick trees for every 3 healthy trees. We can then say that the odds of a tree being sick (as opposed to healthy) are $(2 : 3).$\n\nOdds express *relative* chances. Saying "There's 2 sick trees for every 3 healthy trees" is the same as saying "There's 10 sick trees for every 15 healthy trees." If the original odds are $(x : y)$ we can multiply by a positive number $\\alpha$ and get a set of equivalent odds $(\\alpha x : \\alpha y).$ \n\nIf there's 2 sick trees for every 3 healthy trees, and every tree is either sick or healthy, then the *probability* of randomly picking a sick tree from among *all* trees is 2/(2+3):\n\n\n\nIf the set of possibilities $A, B, C$ are [1rd mutually exclusive and exhaustive], then the probabilities $\\mathbb P(A) + \\mathbb P(B) + \\mathbb P(C)$ should sum to $1.$ If there's no further possibilities $d,$ we can convert the relative odds $(a : b : c)$ into the probabilities $(\\frac{a}{a + b + c} : \\frac{b}{a + b + c} : \\frac{c}{a + b + c}).$ The process of dividing each term by the sum of terms, to turn a set of proportional odds into probabilities that sum to 1, is called [1rk normalization].\n\nWhen there are only two terms $x$ and $y$ in the odds, they can be expressed as a single ratio $\\frac{x}{y}.$ An odds ratio of $\\frac{x}{y}$ refers to odds of $(x : y),$ or, equivalently, odds of $\\left(\\frac{x}{y} : 1\\right).$ Odds of $(x : y)$ are sometimes called odds ratios, where it is understood that the actual ratio is $\\frac{x}{y}.$',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'Let's say that, in a certain forest, there are 2 sick trees for every 3 healthy trees. We can then say that the odds of a tree being sick (as opposed to healthy) are $(2 : 3).$'
},
creatorIds: [
'NateSoares',
'EliezerYudkowsky'
],
childIds: [],
parentIds: [
'odds'
],
commentIds: [],
questionIds: [],
tagIds: [
'start_meta_tag',
'high_speed_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '5758',
parentId: 'odds',
childId: 'odds_refresher',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-01 23:14:07',
level: '2',
isStrong: 'true',
everPublished: 'true'
},
{
id: '5759',
parentId: 'math1',
childId: 'odds_refresher',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-01 23:15:27',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
subjects: [
{
id: '5063',
parentId: 'odds',
childId: 'odds_refresher',
type: 'subject',
creatorId: 'NateSoares',
createdAt: '2016-07-08 15:36:26',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: 'odds',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {
'1rb': [
'1rq',
'1x3',
'1x4',
'1x8',
'1zm',
'21c'
]
},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20130',
pageId: 'odds_refresher',
userId: 'EliezerYudkowsky',
edit: '6',
type: 'newEdit',
createdAt: '2016-10-13 00:38:46',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20129',
pageId: 'odds_refresher',
userId: 'EliezerYudkowsky',
edit: '5',
type: 'newEdit',
createdAt: '2016-10-13 00:38:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20101',
pageId: 'odds_refresher',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newTag',
createdAt: '2016-10-11 19:14:23',
auxPageId: 'high_speed_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17938',
pageId: 'odds_refresher',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newRequirement',
createdAt: '2016-08-01 23:15:27',
auxPageId: 'math1',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17937',
pageId: 'odds_refresher',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newRequirement',
createdAt: '2016-08-01 23:14:07',
auxPageId: 'odds',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17926',
pageId: 'odds_refresher',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newTag',
createdAt: '2016-08-01 22:44:55',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16188',
pageId: 'odds_refresher',
userId: 'NateSoares',
edit: '0',
type: 'newSubject',
createdAt: '2016-07-08 15:36:27',
auxPageId: 'odds',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15923',
pageId: 'odds_refresher',
userId: 'NateSoares',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-07 05:01:47',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15919',
pageId: 'odds_refresher',
userId: 'NateSoares',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-07 04:54:54',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15918',
pageId: 'odds_refresher',
userId: 'NateSoares',
edit: '0',
type: 'newAlias',
createdAt: '2016-07-07 04:54:53',
auxPageId: '',
oldSettingsValue: 'odds_ratio_refresher',
newSettingsValue: 'odds_refresher'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15837',
pageId: 'odds_refresher',
userId: 'NateSoares',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 22:48:07',
auxPageId: 'odds',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15835',
pageId: 'odds_refresher',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-06 22:47:56',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}