{ localUrl: '../page/orbit_stabiliser_theorem.html', arbitalUrl: 'https://arbital.com/p/orbit_stabiliser_theorem', rawJsonUrl: '../raw/4l8.json', likeableId: '2921', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'orbit_stabiliser_theorem', edit: '9', editSummary: '', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'Orbit-stabiliser theorem', clickbait: 'The Orbit-Stabiliser theorem tells us a lot about how a group acts on a given element.', textLength: '2981', alias: 'orbit_stabiliser_theorem', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'MarkChimes', editCreatedAt: '2016-07-01 04:46:57', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-19 17:29:07', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '101', text: '[summary: \nA [-3t9 group action] of a group $G$ acting on a set $X$ describes how $G$ sends elements of $X$ to other elements of $X$. Given a specific element $x \\in X$, the [-4mz stabiliser] is all those elements of the group which send $x$ back to itself, and the [-4v8 orbit] of $x$ is all the elements to which $x$ can get sent. \n\nThis theorem tells you that $G$ is divided into equal-sized pieces using $x$. Each piece "looks like" the stabilizer of $x$ (and is the same size), and the orbit of $x$ tells you how to "move the piece around" over $G$ in order to cover it. \n\nPut another way, each element $y$ in the orbit of $x$ is transformed "in the same way" by $G$ relative to $y$. \n\nThis theorem is closely related to [-4jn Lagrange's Theorem]. \n]\n\n[summary(Technical): Let $G$ be a finite [-3gd], [3t9 acting] on a set $X$. Let $x \\in X$.\nWriting $\\mathrm{Stab}_G(x)$ for the [4mz stabiliser] of $x$, and $\\mathrm{Orb}_G(x)$ for the [4v8 orbit] of $x$, we have $$|G| = |\\mathrm{Stab}_G(x)| \\times |\\mathrm{Orb}_G(x)|$$ where $| \\cdot |$ refers to the size of a set.]\n\nLet $G$ be a finite [-3gd], [3t9 acting] on a set $X$. Let $x \\in X$.\nWriting $\\mathrm{Stab}_G(x)$ for the [4mz stabiliser] of $x$, and $\\mathrm{Orb}_G(x)$ for the [4v8 orbit] of $x$, we have $$|G| = |\\mathrm{Stab}_G(x)| \\times |\\mathrm{Orb}_G(x)|$$ where $| \\cdot |$ refers to the size of a set.\n\nThis statement generalises to infinite groups, where the same proof goes through to show that there is a [499 bijection] between the [4j4 left cosets] of the group $\\mathrm{Stab}_G(x)$ and the orbit $\\mathrm{Orb}_G(x)$.\n\n# Proof\n\nRecall that the [-4lt] of the parent group.\n\nFirstly, it is enough to show that there is a bijection between the left cosets of the stabiliser, and the orbit.\nIndeed, then $$|\\mathrm{Orb}_G(x)| |\\mathrm{Stab}_G(x)| = |\\{ \\text{left cosets of} \\ \\mathrm{Stab}_G(x) \\}| |\\mathrm{Stab}_G(x)|$$\nbut the right-hand side is simply $|G|$ because an element of $G$ is specified exactly by specifying an element of the stabiliser and a coset.\n(This follows because the [4j5 cosets partition the group].)\n\n## Finding the bijection\n\nDefine $\\theta: \\mathrm{Orb}_G(x) \\to \\{ \\text{left cosets of} \\ \\mathrm{Stab}_G(x) \\}$, by $$g(x) \\mapsto g \\mathrm{Stab}_G(x)$$\n\nThis map is well-defined: note that any element of $\\mathrm{Orb}_G(x)$ is given by $g(x)$ for some $g \\in G$, so we need to show that if $g(x) = h(x)$, then $g \\mathrm{Stab}_G(x) = h \\mathrm{Stab}_G(x)$.\nThis follows: $h^{-1}g(x) = x$ so $h^{-1}g \\in \\mathrm{Stab}_G(x)$.\n\nThe map is [4b7 injective]: if $g \\mathrm{Stab}_G(x) = h \\mathrm{Stab}_G(x)$ then we need $g(x)=h(x)$.\nBut this is true: $h^{-1} g \\in \\mathrm{Stab}_G(x)$ and so $h^{-1}g(x) = x$, from which $g(x) = h(x)$.\n\nThe map is [4bg surjective]: let $g \\mathrm{Stab}_G(x)$ be a left coset.\nThen $g(x) \\in \\mathrm{Orb}_G(x)$ by definition of the orbit, so $g(x)$ gets taken to $g \\mathrm{Stab}_G(x)$ as required.\n\nHence $\\theta$ is a well-defined bijection.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens', 'MarkChimes', 'AlexeiAndreev' ], childIds: [ 'orbit_stabiliser_theorem_external_resources' ], parentIds: [ 'group_action' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4277', parentId: 'group_action', childId: 'orbit_stabiliser_theorem', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-19 17:18:00', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4278', parentId: 'bijective_function', childId: 'orbit_stabiliser_theorem', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-19 17:28:28', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4304', parentId: 'stabiliser_is_a_subgroup', childId: 'orbit_stabiliser_theorem', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-20 08:56:27', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [ { id: '58', pageId: 'orbit_stabiliser_theorem', lensId: 'orbit_stabiliser_theorem_external_resources', lensIndex: '0', lensName: 'External resources', lensSubtitle: '', createdBy: '4c1', createdAt: '2016-07-01 04:49:55', updatedBy: '1yq', updatedAt: '2016-07-03 00:00:18' } ], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15036', pageId: 'orbit_stabiliser_theorem', userId: 'MarkChimes', edit: '0', type: 'newChild', createdAt: '2016-07-01 04:49:46', auxPageId: 'orbit_stabiliser_theorem_external_resources', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15034', pageId: 'orbit_stabiliser_theorem', userId: 'MarkChimes', edit: '9', type: 'newEdit', createdAt: '2016-07-01 04:46:57', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15033', pageId: 'orbit_stabiliser_theorem', userId: 'MarkChimes', edit: '0', type: 'deleteTag', createdAt: '2016-07-01 04:46:02', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15031', pageId: 'orbit_stabiliser_theorem', userId: 'MarkChimes', edit: '8', type: 'newEdit', createdAt: '2016-07-01 04:45:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Fixed some spacing in summary' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14729', pageId: 'orbit_stabiliser_theorem', userId: 'AlexeiAndreev', edit: '7', type: 'newEdit', createdAt: '2016-06-28 22:55:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14726', pageId: 'orbit_stabiliser_theorem', userId: 'MarkChimes', edit: '5', type: 'newEdit', createdAt: '2016-06-28 22:04:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14684', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-06-28 14:03:00', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14156', pageId: 'orbit_stabiliser_theorem', userId: 'AlexeiAndreev', edit: '0', type: 'newTag', createdAt: '2016-06-20 22:04:00', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14090', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-20 08:56:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14089', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-20 08:56:28', auxPageId: 'stabiliser_is_a_subgroup', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14002', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-19 17:29:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13998', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-19 17:29:10', auxPageId: 'group_action', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13999', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-19 17:29:10', auxPageId: 'bijective_function', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13997', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-06-19 17:29:09', auxPageId: 'group_action', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13995', pageId: 'orbit_stabiliser_theorem', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-19 17:29:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }