{
localUrl: '../page/order_of_a_group_element.html',
arbitalUrl: 'https://arbital.com/p/order_of_a_group_element',
rawJsonUrl: '../raw/4cq.json',
likeableId: '2699',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'EricRogstad'
],
pageId: 'order_of_a_group_element',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Order of a group element',
clickbait: '',
textLength: '1097',
alias: 'order_of_a_group_element',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-15 10:14:47',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-15 10:14:47',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '26',
text: 'Given an element $g$ of group $(G, +)$ (which henceforth we abbreviate simply as $G$), the order of $g$ is the number of times we must add $g$ to itself to obtain the identity element $e$.\n\n%%%knows-requisite([3gg]):\nEquivalently, it is the order of the group $\\langle g \\rangle$ generated by $g$: that is, the order of $\\{ e, g, g^2, \\dots, g^{-1}, g^{-2}, \\dots \\}$ under the inherited group operation $+$.\n%%%\n\nConventionally, the identity element itself has order $1$.\n\n# Examples\n\n%%%knows-requisite([497]):\nIn the [-497] $S_5$, the order of an element is the [-least_common_multiple] of its [4cg cycle type].\n%%%\n%%%knows-requisite([47y]):\nIn the [-47y] $C_6$, the order of the generator is $6$.\nIf we view $C_6$ as being the integers [modular_arithmetic modulo] $6$ under addition, then the element $0$ has order $1$; the elements $1$ and $5$ have order $6$; the elements $2$ and $4$ have order $3$; and the element $3$ has order $2$.\n%%%\n\nIn the group $\\mathbb{Z}$ of [48l integers] under addition, every element except $0$ has infinite order. $0$ itself has order $1$, being the identity.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'group_mathematics'
],
commentIds: [],
questionIds: [],
tagIds: [
'formal_definition_meta_tag',
'needs_clickbait_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [
{
id: '3975',
parentId: 'order_of_a_group_element',
childId: 'group_order',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17127',
pageId: 'order_of_a_group_element',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-19 02:06:08',
auxPageId: 'needs_clickbait_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13743',
pageId: 'order_of_a_group_element',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-06-17 22:02:18',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13741',
pageId: 'order_of_a_group_element',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-06-17 22:02:17',
auxPageId: 'formal_definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13006',
pageId: 'order_of_a_group_element',
userId: 'PatrickStevens',
edit: '1',
type: 'newTeacher',
createdAt: '2016-06-15 10:15:44',
auxPageId: 'group_order',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13005',
pageId: 'order_of_a_group_element',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-15 10:14:47',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13002',
pageId: 'order_of_a_group_element',
userId: 'PatrickStevens',
edit: '1',
type: 'newTag',
createdAt: '2016-06-15 10:07:58',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13001',
pageId: 'order_of_a_group_element',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-15 10:07:50',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}