{
  localUrl: '../page/order_of_a_group_element.html',
  arbitalUrl: 'https://arbital.com/p/order_of_a_group_element',
  rawJsonUrl: '../raw/4cq.json',
  likeableId: '2699',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'EricRogstad'
  ],
  pageId: 'order_of_a_group_element',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Order of a group element',
  clickbait: '',
  textLength: '1097',
  alias: 'order_of_a_group_element',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-15 10:14:47',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-15 10:14:47',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '26',
  text: 'Given an element $g$ of group $(G, +)$ (which henceforth we abbreviate simply as $G$), the order of $g$ is the number of times we must add $g$ to itself to obtain the identity element $e$.\n\n%%%knows-requisite([3gg]):\nEquivalently, it is the order of the group $\\langle g \\rangle$ generated by $g$: that is, the order of $\\{ e, g, g^2, \\dots, g^{-1}, g^{-2}, \\dots \\}$ under the inherited group operation $+$.\n%%%\n\nConventionally, the identity element itself has order $1$.\n\n# Examples\n\n%%%knows-requisite([497]):\nIn the [-497] $S_5$, the order of an element is the [-least_common_multiple] of its [4cg cycle type].\n%%%\n%%%knows-requisite([47y]):\nIn the [-47y] $C_6$, the order of the generator is $6$.\nIf we view $C_6$ as being the integers [modular_arithmetic modulo] $6$ under addition, then the element $0$ has order $1$; the elements $1$ and $5$ have order $6$; the elements $2$ and $4$ have order $3$; and the element $3$ has order $2$.\n%%%\n\nIn the group $\\mathbb{Z}$ of [48l integers] under addition, every element except $0$ has infinite order. $0$ itself has order $1$, being the identity.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'formal_definition_meta_tag',
    'needs_clickbait_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [
    {
      id: '3975',
      parentId: 'order_of_a_group_element',
      childId: 'group_order',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17127',
      pageId: 'order_of_a_group_element',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-19 02:06:08',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13743',
      pageId: 'order_of_a_group_element',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-06-17 22:02:18',
      auxPageId: 'definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13741',
      pageId: 'order_of_a_group_element',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-17 22:02:17',
      auxPageId: 'formal_definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13006',
      pageId: 'order_of_a_group_element',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newTeacher',
      createdAt: '2016-06-15 10:15:44',
      auxPageId: 'group_order',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13005',
      pageId: 'order_of_a_group_element',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-15 10:14:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13002',
      pageId: 'order_of_a_group_element',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-15 10:07:58',
      auxPageId: 'definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13001',
      pageId: 'order_of_a_group_element',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-15 10:07:50',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}