{ localUrl: '../page/pi_is_irrational.html', arbitalUrl: 'https://arbital.com/p/pi_is_irrational', rawJsonUrl: '../raw/513.json', likeableId: '2925', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'JaimeSevillaMolina' ], pageId: 'pi_is_irrational', edit: '4', editSummary: '', prevEdit: '3', currentEdit: '4', wasPublished: 'true', type: 'wiki', title: 'Pi is irrational', clickbait: 'The number pi is famously not rational, in spite of joking attempts at legislation to fix its value at 3 or 22/7.', textLength: '3345', alias: 'pi_is_irrational', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-07-21 19:36:18', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-07-03 10:25:33', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '1', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '137', text: 'The number [49r $\\pi$] is not [4zq rational].\n\n# Proof\n\nFor any fixed real number $q$, and any [-45h] $n$, let $$A_n = \\frac{q^n}{n!} \\int_0^{\\pi} [x (\\pi - x)]^n \\sin(x) dx$$\nwhere $n!$ is the [-5bv] of $n$, $\\int$ is the [-definite_integral], and $\\sin$ is the [-sin_function].\n\n## Preparatory work\n\nExercise: $A_n = (4n-2) q A_{n-1} - (q \\pi)^2 A_{n-2}$.\n%%hidden(Show solution):\nWe use [-integration_by_parts].\n\n[todo: show this]\n%%\n\nNow, $$A_0 = \\int_0^{\\pi} \\sin(x) dx = 2$$\nso $A_0$ is an integer.\n\nAlso $$A_1 = q \\int_0^{\\pi} x (\\pi-x) \\sin(x) dx$$ which by a simple calculation is $4q$.\n%%hidden(Show calculation):\nExpand the integrand and then integrate by parts repeatedly:\n$$\\frac{A_1}{q} = \\int_0^{\\pi} x (\\pi-x) \\sin(x) dx = \\pi \\int_0^{\\pi} x \\sin(x) dx - \\int_0^{\\pi} x^2 \\sin(x) dx$$\n\nThe first integral term is $$[-x \\cos(x)]_0^{\\pi} + \\int_0^{\\pi} \\cos(x) dx = \\pi$$\n\nThe second integral term is $$[-x^2 \\cos(x)]_{0}^{\\pi} + \\int_0^{\\pi} 2x \\cos(x) dx$$\nwhich is $$\\pi^2 + 2 \\left( [x \\sin(x)]_0^{\\pi} - \\int_0^{\\pi} \\sin(x) dx \\right)$$\nwhich is $$\\pi^2 -4$$\n\nTherefore $$\\frac{A_1}{q} = \\pi^2 - (\\pi^2 - 4) = 4$$\n%%\n\nTherefore, if $q$ and $q \\pi$ are integers, then so is $A_n$ [5fz inductively], because $(4n-2) q A_{n-1}$ is an integer and $(q \\pi)^2 A_{n-2}$ is an integer.\n\nBut also $A_n \\to 0$ as $n \\to \\infty$, because $\\int_0^{\\pi} [x (\\pi-x)]^n \\sin(x) dx$ is in modulus at most $$\\pi \\times \\max_{0 \\leq x \\leq \\pi} [x (\\pi-x)]^n \\sin(x) \\leq \\pi \\times \\max_{0 \\leq x \\leq \\pi} [x (\\pi-x)]^n = \\pi \\times \\left[\\frac{\\pi^2}{4}\\right]^n$$\nand hence $$|A_n| \\leq \\frac{1}{n!} \\left[\\frac{\\pi^2 q}{4}\\right]^n$$\n\nFor $n$ larger than $\\frac{\\pi^2 q}{4}$, this expression is getting smaller with $n$, and moreover it gets smaller faster and faster as $n$ increases; so its limit is $0$.\n%%hidden(Formal treatment):\nWe claim that $\\frac{r^n}{n!} \\to 0$ as $n \\to \\infty$, for any $r > 0$.\n\nIndeed, we have $$\\frac{r^{n+1}/(n+1)!}{r^n/n!} = \\frac{r}{n+1}$$\nwhich, for $n > 2r-1$, is less than $\\frac{1}{2}$.\nTherefore the ratio between successive terms is less than $\\frac{1}{2}$ for sufficiently large $n$, and so the sequence must shrink at least geometrically to $0$.\n%%\n\n## Conclusion\n\nSuppose (for [46z contradiction]) that $\\pi$ is rational; then it is $\\frac{p}{q}$ for some integers $p, q$.\n\nNow $q \\pi$ is an integer (indeed, it is $p$), and $q$ is certainly an integer, so by what we showed above, $A_n$ is an integer for all $n$.\n\nBut $A_n \\to 0$ as $n \\to \\infty$, so there is some $N$ for which $|A_n| < \\frac{1}{2}$ for all $n > N$; hence for all sufficiently large $n$, $A_n$ is $0$.\nWe already know that $A_0 = 2$ and $A_1 = 4q$, neither of which is $0$; so let $N$ be the first integer such that $A_n = 0$ for all $n \\geq N$, and we can already note that $N > 1$.\n\nThen $$0 = A_{N+1} = (4N-2) q A_N - (q \\pi)^2 A_{N-1} = - (q \\pi)^2 A_{N-1}$$\nwhence $q=0$ or $\\pi = 0$ or $A_{N-1} = 0$.\n\nCertainly $q \\not = 0$ because $q$ is the denominator of a fraction; and $\\pi \\not = 0$ by whatever definition of $\\pi$ we care to use.\nBut also $A_{N-1}$ is not $0$ because then $N-1$ would be an integer $m$ such that $A_n = 0$ for all $n \\geq m$, and that contradicts the definition of $N$ as the *least* such integer.\n\nWe have obtained the required contradiction; so it must be the case that $\\pi$ is irrational.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens', 'EricRogstad' ], childIds: [], parentIds: [ 'pi', 'irrational_number' ], commentIds: [], questionIds: [], tagIds: [ 'proof_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4716', parentId: 'rational_number', childId: 'pi_is_irrational', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-07-03 09:52:22', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4718', parentId: 'math3', childId: 'pi_is_irrational', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-07-03 10:27:15', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17248', pageId: 'pi_is_irrational', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-07-21 19:36:18', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17240', pageId: 'pi_is_irrational', userId: 'EricRogstad', edit: '3', type: 'newEdit', createdAt: '2016-07-21 17:57:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '[pi_real_number $\\pi$] -> [pi $\\pi$]' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15619', pageId: 'pi_is_irrational', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-06 06:49:42', auxPageId: 'irrational_number', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15617', pageId: 'pi_is_irrational', userId: 'EricBruylant', edit: '0', type: 'deleteParent', createdAt: '2016-07-06 06:49:36', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15615', pageId: 'pi_is_irrational', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-06 06:49:35', auxPageId: 'pi', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15386', pageId: 'pi_is_irrational', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-07-05 08:37:32', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Minor insertion of a word' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15265', pageId: 'pi_is_irrational', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-04 18:04:26', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15172', pageId: 'pi_is_irrational', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-03 10:27:15', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15170', pageId: 'pi_is_irrational', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-03 10:25:35', auxPageId: 'rational_number', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15171', pageId: 'pi_is_irrational', userId: 'PatrickStevens', edit: '0', type: 'newTag', createdAt: '2016-07-03 10:25:35', auxPageId: 'proof_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15169', pageId: 'pi_is_irrational', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-07-03 10:25:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }