{
localUrl: '../page/poset_examples.html',
arbitalUrl: 'https://arbital.com/p/poset_examples',
rawJsonUrl: '../raw/43s.json',
likeableId: '2620',
likeableType: 'page',
myLikeValue: '0',
likeCount: '3',
dislikeCount: '0',
likeScore: '3',
individualLikes: [
'EricBruylant',
'VladArber',
'EricRogstad'
],
pageId: 'poset_examples',
edit: '17',
editSummary: '',
prevEdit: '16',
currentEdit: '17',
wasPublished: 'true',
type: 'wiki',
title: 'Poset: Examples',
clickbait: '',
textLength: '2638',
alias: 'poset_examples',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'KevinClancy',
editCreatedAt: '2016-12-06 21:34:09',
pageCreatorId: 'KevinClancy',
pageCreatedAt: '2016-06-08 22:29:11',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '74',
text: 'The standard $\\leq$ relation on integers, the $\\subseteq$ relation on sets, and the $|$ (divisibility) relation on natural numbers are all examples of poset orders.\n\nInteger Comparison\n================\n\nThe set $\\mathbb Z$ of integers, ordered by the standard "less than or equal to" operator $\\leq$ forms a poset $\\langle \\mathbb Z, \\leq \\rangle$. This poset is somewhat boring however, because all pairs of elements are comparable; such posets are called chains or [540 totally ordered sets]. Here is its Hasse diagram.\n\n\n%%%comment:\ndot source (doctored in GIMP)\n\ndigraph G {\n node [width = 0.1, height = 0.1]\n edge [arrowhead = "none"]\n a [label = "-3"]\n b [label = "-2"]\n c [label = "-1"]\n d [label = "0"]\n e [label = "1"]\n f [label = "2"]\n g [label = "3"]\n rankdir = BT;\n a -> b\n b -> c\n c -> d\n d -> e\n e -> f\n f -> g\n}\n%%%\nPower sets\n=========\n\nFor any set $X$, the power set of $X$ ordered by the set inclusion relation $\\subseteq$ forms a poset $\\langle \\mathcal{P}(X), \\subseteq \\rangle$. $\\subseteq$ is clearly [5dy reflexive], since any set is a subset of itself. For $A,B \\in \\mathcal{P}(X)$, $A \\subseteq B$ and $B \\subseteq A$ combine to give $x \\in A \\Leftrightarrow x \\in B$ which means $A = B$. Thus, $\\subseteq$ is [5lt antisymmetric]. Finally, for $A, B, C \\in \\mathcal{P}(X)$, $A \\subseteq B$ and $B \\subseteq C$ give $x \\in A \\Rightarrow x \\in B$ and $x \\in B \\Rightarrow x \\in C$, and so the [573 transitivity] of $\\subseteq$ follows from the transitivity of $\\Rightarrow$.\n\nNote that the strict subset relation $\\subset$ is the strict ordering derived from the poset $\\langle \\mathcal{P}(X), \\subseteq \\rangle$.\n\nDivisibility on the natural numbers\n===========================\n\nLet [45h $\\mathbb N$] be the set of natural numbers including zero, and let $|$ be the divides relation, where $a|b$ whenever there exists an integer $k$ such that $ak=b$. Then $\\langle \\mathbb{N}, | \\rangle$ is a poset. $|$ is reflexive because, letting k=1, any natural number divides itself. To see that $|$ is anti-symmetric, suppose $a|b$ and $b|a$. Then there exist integers $k_1$ and $k_2$ such that $a = k_1b$ and $b = k_2a$. By substitution, we have $a = k_1k_2a$. Thus, if either $k$ is $0$, then both $a$ and $b$ must be $0$. Otherwise, both $k$'s must equal $1$ so that $a = k_1k_2a$ holds. Either way, $a = b$, and so $|$ is anti-symmetric. To see that $|$ is transitive, suppose that $a|b$ and $b|c$. This implies the existence of integers $k_1$ and $k_2$ such that $a = k_1b$ and $b = k_2c$. Since by substitution $a = k_1k_2c$, we have $a|c$.\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'KevinClancy',
'EricRogstad',
'JoeZeng'
],
childIds: [],
parentIds: [
'poset'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: 'poset',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20612',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '17',
type: 'newEdit',
createdAt: '2016-12-06 21:34:09',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20536',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '16',
type: 'newEdit',
createdAt: '2016-12-02 19:08:56',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15436',
pageId: 'poset_examples',
userId: 'JoeZeng',
edit: '15',
type: 'newEdit',
createdAt: '2016-07-05 20:52:26',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15435',
pageId: 'poset_examples',
userId: 'JoeZeng',
edit: '14',
type: 'newEdit',
createdAt: '2016-07-05 20:49:59',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13988',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '13',
type: 'newEdit',
createdAt: '2016-06-19 02:18:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13987',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '12',
type: 'newEdit',
createdAt: '2016-06-19 02:16:29',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13978',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '11',
type: 'newEdit',
createdAt: '2016-06-19 02:07:13',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13900',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '10',
type: 'newEdit',
createdAt: '2016-06-18 14:22:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13898',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '9',
type: 'newEdit',
createdAt: '2016-06-18 14:13:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12184',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '8',
type: 'newEdit',
createdAt: '2016-06-09 17:18:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12178',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '7',
type: 'newEdit',
createdAt: '2016-06-09 17:11:39',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12170',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '6',
type: 'newEdit',
createdAt: '2016-06-09 16:59:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12158',
pageId: 'poset_examples',
userId: 'EricRogstad',
edit: '5',
type: 'newEdit',
createdAt: '2016-06-09 08:26:16',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12156',
pageId: 'poset_examples',
userId: 'EricRogstad',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-09 08:23:40',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12113',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-08 23:00:09',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12112',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-08 22:55:29',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12111',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-08 22:29:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12109',
pageId: 'poset_examples',
userId: 'KevinClancy',
edit: '1',
type: 'newParent',
createdAt: '2016-06-08 22:28:52',
auxPageId: 'poset',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}