{
localUrl: '../page/posterior_probability.html',
arbitalUrl: 'https://arbital.com/p/posterior_probability',
rawJsonUrl: '../raw/1rp.json',
likeableId: '707',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'posterior_probability',
edit: '11',
editSummary: 'removed spurious comma',
prevEdit: '10',
currentEdit: '11',
wasPublished: 'true',
type: 'wiki',
title: 'Posterior probability',
clickbait: 'What we believe, after seeing the evidence and doing a Bayesian update.',
textLength: '870',
alias: 'posterior_probability',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricRogstad',
editCreatedAt: '2016-07-10 07:08:40',
pageCreatorId: 'EliezerYudkowsky',
pageCreatedAt: '2016-01-27 05:32:22',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '251',
text: '"Posterior [1rf probability]" or "posterior [1rb odds]" refers our state of belief *after* seeing a piece of new evidence and doing a [1ly Bayesian update]. Suppose there are two suspects in a murder, Colonel Mustard and Miss Scarlet. Before determining the victim's cause of death, perhaps you thought Mustard and Scarlet were equally likely to have committed the murder (50% and 50%). After determining that the victim was poisoned, you now think that Mustard and Scarlet are respectively 25% and 75% likely to have committed the murder. In this case, your "[1rm prior probability]" of Miss Scarlet committing the murder was 50%, and your "posterior probability" *after* seeing the evidence was 75%. The posterior probability of a hypothesis $H$ after seeing the evidence $e$ is often denoted using the [1rj conditional probability notation] $\\mathbb P(H\\mid e).$',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '2016-02-13 01:02:05',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: '"Posterior [1rf probability]" or "posterior [1rb odds]" refers our state of belief *after* seeing a piece of new evidence and doing a [1ly Bayesian update]. Suppose there are two suspects in a murder, Colonel Mustard and Miss Scarlet. Before determining the victim's cause of death, perhaps you thought Mustard and Scarlet were equally likely to have committed the murder (50% and 50%). After determining that the victim was poisoned, you now think that Mustard and Scarlet are respectively 25% and 75% likely to have committed the murder. In this case, your "[1rm prior probability]" of Miss Scarlet committing the murder was 50%, and your "posterior probability" *after* seeing the evidence was 75%. The posterior probability of a hypothesis $H$ after seeing the evidence $e$ is often denoted using the [1rj conditional probability notation] $\\mathbb P(H\\mid e).$'
},
creatorIds: [
'EliezerYudkowsky',
'NateSoares',
'EricRogstad'
],
childIds: [],
parentIds: [
'bayes_reasoning'
],
commentIds: [],
questionIds: [],
tagIds: [
'needs_summary_meta_tag',
'c_class_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [
{
id: '5859',
parentId: 'posterior_probability',
childId: 'posterior_probability',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-02 17:33:40',
level: '1',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [
{
id: '5860',
parentId: 'conditional_probability',
childId: 'posterior_probability',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-02 17:33:58',
level: '2',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [
{
id: '5859',
parentId: 'posterior_probability',
childId: 'posterior_probability',
type: 'subject',
creatorId: 'AlexeiAndreev',
createdAt: '2016-08-02 17:33:40',
level: '1',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18350',
pageId: 'posterior_probability',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-04 14:16:37',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18349',
pageId: 'posterior_probability',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-08-04 14:16:30',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18347',
pageId: 'posterior_probability',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-04 14:15:39',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18185',
pageId: 'posterior_probability',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-02 18:25:35',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18161',
pageId: 'posterior_probability',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newRequirement',
createdAt: '2016-08-02 17:33:58',
auxPageId: 'conditional_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18157',
pageId: 'posterior_probability',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newTeacher',
createdAt: '2016-08-02 17:33:40',
auxPageId: 'posterior_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18158',
pageId: 'posterior_probability',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newSubject',
createdAt: '2016-08-02 17:33:40',
auxPageId: 'posterior_probability',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16350',
pageId: 'posterior_probability',
userId: 'EricRogstad',
edit: '11',
type: 'newEdit',
createdAt: '2016-07-10 07:08:40',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'removed spurious comma'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16191',
pageId: 'posterior_probability',
userId: 'NateSoares',
edit: '10',
type: 'newEdit',
createdAt: '2016-07-08 15:39:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16190',
pageId: 'posterior_probability',
userId: 'NateSoares',
edit: '9',
type: 'newEdit',
createdAt: '2016-07-08 15:38:45',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5855',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '8',
type: 'newEdit',
createdAt: '2016-01-27 06:59:17',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5843',
pageId: 'posterior_probability',
userId: 'AlexeiAndreev',
edit: '6',
type: 'newParent',
createdAt: '2016-01-27 06:26:11',
auxPageId: 'bayes_reasoning',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5841',
pageId: 'posterior_probability',
userId: 'AlexeiAndreev',
edit: '0',
type: 'deleteParent',
createdAt: '2016-01-27 06:25:58',
auxPageId: 'bayes_reasoning',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5835',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '6',
type: 'newEdit',
createdAt: '2016-01-27 05:45:13',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5834',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '5',
type: 'newEdit',
createdAt: '2016-01-27 05:45:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5833',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '4',
type: 'newEdit',
createdAt: '2016-01-27 05:44:06',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5832',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '3',
type: 'newEdit',
createdAt: '2016-01-27 05:41:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5831',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '2',
type: 'newEdit',
createdAt: '2016-01-27 05:40:32',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5830',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '1',
type: 'newEdit',
createdAt: '2016-01-27 05:32:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '5829',
pageId: 'posterior_probability',
userId: 'EliezerYudkowsky',
edit: '0',
type: 'newParent',
createdAt: '2016-01-27 05:27:53',
auxPageId: 'bayes_reasoning',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}