{
  localUrl: '../page/product_is_unique_up_to_isomorphism.html',
  arbitalUrl: 'https://arbital.com/p/product_is_unique_up_to_isomorphism',
  rawJsonUrl: '../raw/60v.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'product_is_unique_up_to_isomorphism',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Product is unique up to isomorphism',
  clickbait: 'If something satisfies the universal property of the product, then it is uniquely specified by that property, up to isomorphism.',
  textLength: '3749',
  alias: 'product_is_unique_up_to_isomorphism',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-08-28 14:53:27',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-08-28 14:52:50',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '44',
  text: '[summary: Here, we prove that the [-5zv] characterises objects uniquely up to [4f4]. That is, if two objects both satisfy the universal property of the product of $A$ and $B$, then they are isomorphic objects.]\n\nRecall the [-600] of the [5zv product]:\n\n> Given objects $A$ and $B$, we define the *product* to be the following collection of three objects, if it exists: $$A \\times B \\\\ \\pi_A: A \\times B \\to A \\\\ \\pi_B : A \\times B \\to B$$ with the requirement that for every object $X$ and every pair of maps $f_A: X \\to A, f_B: X \\to B$, there is a *unique* map $f: X \\to A \\times B$ such that $\\pi_A \\circ f = f_A$ and $\\pi_B \\circ f = f_B$.\n\nWe wish to show that if the collections $(R, \\pi_A, \\pi_B)$ and $(S, \\phi_A, \\phi_B)$ satisfy the above condition, then there is an [-4f4] between $R$ and $S$. %%note: I'd write $A \\times_1 B$ and $A \\times_2 B$ instead of $R$ and $S$, except that would be really unwieldy. Just remember that $R$ and $S$ are both standing for products of $A$ and $B$.%%\n\n# Proof\n\nThe proof follows a pattern which is standard for these things.\n\nSince $R$ is a product of $A$ and $B$, we can let $X = S$ in the universal property to obtain:\n\n> For every pair of maps $f_A: S \\to A, f_B: S \\to B$ there is a unique map $f: S \\to R$ such that $\\pi_A \\circ f = f_A$ and $\\pi_B \\circ f = f_B$.\n\nNow let $f_A = \\phi_A, f_B = \\phi_B$:\n\n> There is a unique map $\\phi: S \\to R$ such that $\\pi_A \\circ \\phi = \\phi_A$ and $\\pi_B \\circ \\phi = \\phi_B$.\n\nDoing the same again but swapping $R$ for $S$ and $\\phi$ for $\\pi$ (basically starting over with the line "Since $S$ is a product of $A$ and $B$, we can let $X = R$…"), we obtain:\n\n> There is a unique map $\\pi: R \\to S$ such that $\\phi_A \\circ \\pi = \\pi_A$ and $\\phi_B \\circ \\pi = \\pi_B$.\n\nNow, $\\pi \\circ \\phi: S \\to S$ is a map which we wish to be the identity on $S$; that would get us halfway to the answer, because it would tell us that $\\pi$ is left-inverse to $\\phi$.\n\nBut we can use the universal property of $S$ once more, this time looking at maps into $S$:\n\n> For every pair of maps $f_A: S \\to A, f_B: S \\to B$ there is a unique map $f: S \\to S$ such that $\\phi_A \\circ f = f_A$ and $\\phi_B \\circ f = f_B$.\n\nLetting $f_A = \\phi_A$ and $f_B = \\phi_B$, we obtain:\n\n> There is a unique map $f: S \\to S$ such that $\\phi_A \\circ f = \\phi_A$ and $\\phi_B \\circ f = \\phi_B$.\n\nBut I claim that both the identity $1_S$ and also $\\pi \\circ \\phi$ satisfy the same property as $f$, and hence they're equal by the uniqueness of $f$.\nIndeed, \n\n- $1_S$ certainly satisfies the property, since that would just say that $\\phi_A = \\phi_A$ and $\\phi_B = \\phi_B$;\n- $\\pi \\circ \\phi$ satisfies the property, since we already found that $\\phi_A \\circ \\pi = \\pi_A$ and that $\\phi_B \\circ \\pi = \\pi_B$.\n\nTherefore $\\pi$ is left-inverse to $\\phi$.\n\nNow to complete the proof, we just need to repeat *exactly* the same steps but with $(R, \\pi_A, \\pi_B)$ and $(S, \\phi_A, \\phi_B)$ interchanged throughout.\nThe outcome is that $\\phi$ is left-inverse to $\\pi$.\n\nHence $\\pi$ and $\\phi$ are genuinely inverse to each other, so they are both isomorphisms $R \\to S$ and $S \\to R$ respectively.\n\n# The characterisation is not unique\n\nTo show that we can't do better than "characterised up to isomorphism", we show that the product is not characterised *uniquely*.\nIndeed, if $(A \\times B, \\pi_A, \\pi_B)$ is a product of $A$ and $B$, then so is $(B \\times A, \\pi'_A, \\pi'_B)$, where $\\pi'_A(b, a) = a$ and $\\pi'_B(b, a) = b$.\n(You can check that this does satisfy the universal property for a product of $A$ and $B$.)\n\nNotice, though, that $A \\times B$ and $B \\times A$ are isomorphic as guaranteed by the theorem.\nThe isomorphism is the map $A \\times B \\to B \\times A$ given by $(a,b) \\mapsto (b,a)$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'product_universal_property'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19365',
      pageId: 'product_is_unique_up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-28 14:54:07',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19364',
      pageId: 'product_is_unique_up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-28 14:53:27',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19363',
      pageId: 'product_is_unique_up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-28 14:52:51',
      auxPageId: 'product_universal_property',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19361',
      pageId: 'product_is_unique_up_to_isomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-08-28 14:52:50',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}