{
localUrl: '../page/rationals_are_a_field.html',
arbitalUrl: 'https://arbital.com/p/rationals_are_a_field',
rawJsonUrl: '../raw/4zr.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'rationals_are_a_field',
edit: '4',
editSummary: '',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'The rationals form a field',
clickbait: '',
textLength: '2611',
alias: 'rationals_are_a_field',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'JoeZeng',
editCreatedAt: '2016-07-06 18:28:22',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-07-01 16:15:57',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '1',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '23',
text: 'The set $\\mathbb{Q}$ of [4zq rational numbers] is a [481 field].\n\n# Proof\n\n$\\mathbb{Q}$ is a ([3jb commutative]) [3gq ring] with additive identity $\\frac{0}{1}$ (which we will write as $0$ for short) and multiplicative identity $\\frac{1}{1}$ (which we will write as $1$ for short): we check the axioms individually.\n\n- $+$ is commutative: $\\frac{a}{b} + \\frac{c}{d} = \\frac{ad+bc}{bd}$, which by commutativity of addition and multiplication in $\\mathbb{Z}$ is $\\frac{cb+da}{db} = \\frac{c}{d} + \\frac{a}{b}$\n- $0$ is an identity for $+$: have $\\frac{a}{b}+0 = \\frac{a}{b} + \\frac{0}{1} = \\frac{a \\times 1 + 0 \\times b}{b \\times 1}$, which is $\\frac{a}{b}$ because $1$ is a multiplicative identity in $\\mathbb{Z}$ and $0 \\times n = 0$ for every integer $n$.\n- Every rational has an additive inverse: $\\frac{a}{b}$ has additive inverse $\\frac{-a}{b}$.\n- $+$ is [3h4 associative]: $$\\left(\\frac{a_1}{b_1}+\\frac{a_2}{b_2}\\right)+\\frac{a_3}{b_3} = \\frac{a_1 b_2 + b_1 a_2}{b_1 b_2} + \\frac{a_3}{b_3} = \\frac{a_1 b_2 b_3 + b_1 a_2 b_3 + a_3 b_1 b_2}{b_1 b_2 b_3}$$\nwhich we can easily check is equal to $\\frac{a_1}{b_1}+\\left(\\frac{a_2}{b_2}+\\frac{a_3}{b_3}\\right)$. [todo: actually do this]\n- $\\times$ is associative, trivially: $$\\left(\\frac{a_1}{b_1} \\frac{a_2}{b_2}\\right) \\frac{a_3}{b_3} = \\frac{a_1 a_2}{b_1 b_2} \\frac{a_3}{b_3} = \\frac{a_1 a_2 a_3}{b_1 b_2 b_3} = \\frac{a_1}{b_1} \\left(\\frac{a_2 a_3}{b_2 b_3}\\right) = \\frac{a_1}{b_1} \\left(\\frac{a_2}{b_2} \\frac{a_3}{b_3}\\right)$$\n- $\\times$ is commutative, again trivially: $$\\frac{a}{b} \\frac{c}{d} = \\frac{ac}{bd} = \\frac{ca}{db} = \\frac{c}{d} \\frac{a}{b}$$\n- $1$ is an identity for $\\times$: $$\\frac{a}{b} \\times 1 = \\frac{a}{b} \\times \\frac{1}{1} = \\frac{a \\times 1}{b \\times 1} = \\frac{a}{b}$$ by the fact that $1$ is an identity for $\\times$ in $\\mathbb{Z}$.\n- $+$ distributes over $\\times$: $$\\frac{a}{b} \\left(\\frac{x_1}{y_1}+\\frac{x_2}{y_2}\\right) = \\frac{a}{b} \\frac{x_1 y_2 + x_2 y_1}{y_1 y_2} = \\frac{a \\left(x_1 y_2 + x_2 y_1\\right)}{b y_1 y_2}$$\nwhile $$\\frac{a}{b} \\frac{x_1}{y_1} + \\frac{a}{b} \\frac{x_2}{y_2} = \\frac{a x_1}{b y_1} + \\frac{a x_2}{b y_2} = \\frac{a x_1 b y_2 + b y_1 a x_2}{b^2 y_1 y_2} = \\frac{a x_1 y_2 + a y_1 x_2}{b y_1 y_2}$$\nso we are done by distributivity of $+$ over $\\times$ in $\\mathbb{Z}$.\n\nSo far we have shown that $\\mathbb{Q}$ is a ring; to show that it is a field, we need all nonzero fractions to have inverses under multiplication.\nBut if $\\frac{a}{b}$ is not $0$ (equivalently, $a \\not = 0$), then $\\frac{a}{b}$ has inverse $\\frac{b}{a}$, which does indeed exist since $a \\not = 0$.\n\nThis completes the proof.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'JoeZeng'
],
childIds: [],
parentIds: [
'rational_number'
],
commentIds: [],
questionIds: [],
tagIds: [
'proof_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '4664',
parentId: 'algebraic_field',
childId: 'rationals_are_a_field',
type: 'requirement',
creatorId: 'PatrickStevens',
createdAt: '2016-07-01 15:57:21',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '2965',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '15731',
pageId: 'rationals_are_a_field',
userId: 'JoeZeng',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-06 18:28:22',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15137',
pageId: 'rationals_are_a_field',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-02 23:33:15',
auxPageId: 'proof_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15065',
pageId: 'rationals_are_a_field',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-01 16:17:12',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15064',
pageId: 'rationals_are_a_field',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-01 16:16:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15063',
pageId: 'rationals_are_a_field',
userId: 'PatrickStevens',
edit: '0',
type: 'newRequirement',
createdAt: '2016-07-01 16:15:59',
auxPageId: 'algebraic_field',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15062',
pageId: 'rationals_are_a_field',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-07-01 16:15:58',
auxPageId: 'rational_number',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15060',
pageId: 'rationals_are_a_field',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-01 16:15:57',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}