{
localUrl: '../page/set_absolute_complement.html',
arbitalUrl: 'https://arbital.com/p/set_absolute_complement',
rawJsonUrl: '../raw/5s7.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'set_absolute_complement',
edit: '2',
editSummary: '',
prevEdit: '1',
currentEdit: '2',
wasPublished: 'true',
type: 'wiki',
title: 'Absolute Complement',
clickbait: '',
textLength: '293',
alias: 'set_absolute_complement',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'MYass',
editCreatedAt: '2016-08-06 01:32:07',
pageCreatorId: 'MYass',
pageCreatedAt: '2016-08-06 00:57:35',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '28',
text: 'The complement $A^\\complement$ of a set $A$ is the set of all things that are not in $A$. Put simply, the complement is its opposite.\n\nWhere $U$ denotes the universe, $A^\\complement = U \\setminus A$. That is, $A^\\complement$ is the [set_relative_complement Relative complement] of $U$ and $A$.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'The complement $A^\\complement$ of a set $A$ is the set of all things that are not in $A$. Put simply, the complement is its opposite.'
},
creatorIds: [
'MYass'
],
childIds: [],
parentIds: [
'set_theory_operation'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [
{
id: '6006',
parentId: 'set_absolute_complement',
childId: 'set_absolute_complement',
type: 'subject',
creatorId: 'MYass',
createdAt: '2016-08-06 00:55:53',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [
{
id: '6005',
parentId: 'set_mathematics',
childId: 'set_absolute_complement',
type: 'requirement',
creatorId: 'MYass',
createdAt: '2016-08-06 00:55:15',
level: '1',
isStrong: 'true',
everPublished: 'true'
}
],
subjects: [
{
id: '6006',
parentId: 'set_absolute_complement',
childId: 'set_absolute_complement',
type: 'subject',
creatorId: 'MYass',
createdAt: '2016-08-06 00:55:53',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18485',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '0',
type: 'newParent',
createdAt: '2016-08-06 03:20:00',
auxPageId: 'set_theory_operation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18477',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '0',
type: 'newAlias',
createdAt: '2016-08-06 03:16:17',
auxPageId: '',
oldSettingsValue: 'set_theory_compliment',
newSettingsValue: 'set_absolute_complement'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18459',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-06 01:32:07',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18455',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '0',
type: 'newRequirement',
createdAt: '2016-08-06 00:57:37',
auxPageId: 'set_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18456',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '0',
type: 'newTeacher',
createdAt: '2016-08-06 00:57:37',
auxPageId: 'set_absolute_complement',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18457',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '0',
type: 'newSubject',
createdAt: '2016-08-06 00:57:37',
auxPageId: 'set_absolute_complement',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18454',
pageId: 'set_absolute_complement',
userId: 'MYass',
edit: '1',
type: 'newEdit',
createdAt: '2016-08-06 00:57:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}