{
  localUrl: '../page/set_absolute_complement.html',
  arbitalUrl: 'https://arbital.com/p/set_absolute_complement',
  rawJsonUrl: '../raw/5s7.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'set_absolute_complement',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Absolute Complement',
  clickbait: '',
  textLength: '293',
  alias: 'set_absolute_complement',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'MYass',
  editCreatedAt: '2016-08-06 01:32:07',
  pageCreatorId: 'MYass',
  pageCreatedAt: '2016-08-06 00:57:35',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '28',
  text: 'The complement $A^\\complement$ of a set $A$ is the set of all things that are not in $A$. Put simply, the complement is its opposite.\n\nWhere $U$ denotes the universe, $A^\\complement = U \\setminus A$. That is, $A^\\complement$ is the [set_relative_complement Relative complement] of $U$ and $A$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'The complement $A^\\complement$ of a set $A$ is the set of all things that are not in $A$. Put simply, the complement is its opposite.'
  },
  creatorIds: [
    'MYass'
  ],
  childIds: [],
  parentIds: [
    'set_theory_operation'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [
    {
      id: '6006',
      parentId: 'set_absolute_complement',
      childId: 'set_absolute_complement',
      type: 'subject',
      creatorId: 'MYass',
      createdAt: '2016-08-06 00:55:53',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  learnMore: [],
  requirements: [
    {
      id: '6005',
      parentId: 'set_mathematics',
      childId: 'set_absolute_complement',
      type: 'requirement',
      creatorId: 'MYass',
      createdAt: '2016-08-06 00:55:15',
      level: '1',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '6006',
      parentId: 'set_absolute_complement',
      childId: 'set_absolute_complement',
      type: 'subject',
      creatorId: 'MYass',
      createdAt: '2016-08-06 00:55:53',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18485',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-06 03:20:00',
      auxPageId: 'set_theory_operation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18477',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-08-06 03:16:17',
      auxPageId: '',
      oldSettingsValue: 'set_theory_compliment',
      newSettingsValue: 'set_absolute_complement'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18459',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-06 01:32:07',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18455',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-06 00:57:37',
      auxPageId: 'set_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18456',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-06 00:57:37',
      auxPageId: 'set_absolute_complement',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18457',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-08-06 00:57:37',
      auxPageId: 'set_absolute_complement',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18454',
      pageId: 'set_absolute_complement',
      userId: 'MYass',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-08-06 00:57:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}