{
  localUrl: '../page/set_product.html',
  arbitalUrl: 'https://arbital.com/p/set_product',
  rawJsonUrl: '../raw/5zs.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'set_product',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Set product',
  clickbait: 'A fundamental way of combining sets is to take their product, making a set that contains all tuples of elements from the originals.',
  textLength: '1436',
  alias: 'set_product',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-08-26 12:46:41',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-08-25 07:47:47',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '6',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '1881',
  text: '[summary: The product of two [3jz sets] $A$ and $B$ is just the collection of ordered pairs $(a,b)$ where $a$ is in $A$ and $b$ is in $B$. The reason we call it the "product" can be seen if you consider the set-product of $\\{1,2,\\dots,n \\}$ and $\\{1,2,\\dots, m \\}$: it consists of ordered pairs $(a, b)$ where $1 \\leq a \\leq n$ and $1 \\leq b \\leq m$, but if we interpret these as integer coordinates in the plane, we obtain just an $n \\times m$ rectangle.]\n\n[summary(Technical): The product of [3jz sets] $Y_x$ indexed by the set $X$ is denoted $\\prod_{x \\in X} Y_x$, and it consists of all $X$-length ordered tuples of elements. For example, if $X = \\{1,2\\}$, and $Y_1 = \\{a,b\\}, Y_2 = \\{b,c\\}$, then $$\\prod_{x \\in X} Y_x = Y_1 \\times Y_2 = \\{(a,b), (a,c), (b,b), (b,c)\\}$$\nIf $X = \\mathbb{Z}$ and $Y_n = \\{ n \\}$, then $$\\prod_{x \\in X} Y_x = \\{(\\dots, -2, -1, 1, 0, 1, 2, \\dots)\\}]\n\n[todo: define the product as tuples]\n\n[todo: several examples, including R^n being the product over $\\{1,2, \\dots, n\\}$; this introduces associativity of the product which is covered later]\n\n[todo: product is associative up to isomorphism, though not literally]\n\n[todo: cardinality of the product, noting that in the finite case it collapses to just the usual definition of the product of natural numbers]\n\n[todo: as an aside, define the product formally in ZF]\n\n[todo: link to universal property, mentioning it is a product in the category of sets]',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '3',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'AntonChaynikov'
  ],
  childIds: [],
  parentIds: [
    'set_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'needs_summary_meta_tag',
    'stub_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '23232',
      pageId: 'set_product',
      userId: 'AntonChaynikov',
      edit: '3',
      type: 'newEditProposal',
      createdAt: '2019-11-18 10:33:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3447',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19163',
      pageId: 'set_product',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-08-26 12:46:41',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19128',
      pageId: 'set_product',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-25 07:47:50',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19129',
      pageId: 'set_product',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-25 07:47:50',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19127',
      pageId: 'set_product',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-08-25 07:47:49',
      auxPageId: 'set_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3435',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '19125',
      pageId: 'set_product',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-08-25 07:47:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {
    improveStub: {
      likeableId: '3585',
      likeableType: 'contentRequest',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '108',
      pageId: 'set_product',
      requestType: 'improveStub',
      createdAt: '2016-10-08 14:50:22'
    }
  }
}