{
localUrl: '../page/set_relative_complement.html',
arbitalUrl: 'https://arbital.com/p/set_relative_complement',
rawJsonUrl: '../raw/5sc.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'set_relative_complement',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Relative complement',
clickbait: '',
textLength: '719',
alias: 'set_relative_complement',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'MYass',
editCreatedAt: '2016-10-04 23:48:10',
pageCreatorId: 'MYass',
pageCreatedAt: '2016-08-06 03:17:23',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '29',
text: 'The relative complement of two sets $A$ and $B$, denoted $A \\setminus B$, is the set of elements that are in $A$ while not in $B$.\n\n\n\nFormally stated, where $C = A \\setminus B$\n\n$$x \\in C \\leftrightarrow (x \\in A \\land x \\notin B)$$\n\nThat is, [46m] $x$ is in the relative complement $C$, then $x$ is in $A$ and x is not in $B$.\n\nFor example,\n\n - $\\{1,2,3\\} \\setminus \\{2\\} = \\{1,3\\}$\n - $\\{1,2,3\\} \\setminus \\{9\\} = \\{1,2,3\\}$\n - $\\{1,2\\} \\setminus \\{1,2,3,4\\} = \\{\\}$\n\nIf we name the set $U$ as the set of all things, then we can define the [5s7 Absolute complement] of the set $A$, $A^\\complement$, as $U \\setminus A$ ',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'The relative complement of two sets $A$ and $B$, denoted $A \\setminus B$, is the set of elements that are in $A$ while not in $B$.'
},
creatorIds: [
'MYass'
],
childIds: [],
parentIds: [
'set_theory_operation'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [
{
id: '6015',
parentId: 'set_relative_complement',
childId: 'set_relative_complement',
type: 'subject',
creatorId: 'MYass',
createdAt: '2016-08-06 02:17:09',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [
{
id: '6014',
parentId: 'set_mathematics',
childId: 'set_relative_complement',
type: 'requirement',
creatorId: 'MYass',
createdAt: '2016-08-06 02:17:03',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
subjects: [
{
id: '6015',
parentId: 'set_relative_complement',
childId: 'set_relative_complement',
type: 'subject',
creatorId: 'MYass',
createdAt: '2016-08-06 02:17:09',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19853',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '0',
type: 'deleteTag',
createdAt: '2016-10-04 23:52:10',
auxPageId: 'needs_image_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3570',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '19849',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '3',
type: 'newEdit',
createdAt: '2016-10-04 23:48:10',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3561',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '19829',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '2',
type: 'newEdit',
createdAt: '2016-10-02 23:06:04',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19280',
pageId: 'set_relative_complement',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-27 13:58:00',
auxPageId: 'needs_image_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18481',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '0',
type: 'newRequirement',
createdAt: '2016-08-06 03:17:26',
auxPageId: 'set_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18482',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '0',
type: 'newTeacher',
createdAt: '2016-08-06 03:17:26',
auxPageId: 'set_relative_complement',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18483',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '0',
type: 'newSubject',
createdAt: '2016-08-06 03:17:26',
auxPageId: 'set_relative_complement',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18480',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '0',
type: 'newParent',
createdAt: '2016-08-06 03:17:25',
auxPageId: 'set_theory_operation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3348',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '18478',
pageId: 'set_relative_complement',
userId: 'MYass',
edit: '1',
type: 'newEdit',
createdAt: '2016-08-06 03:17:23',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}