{
localUrl: '../page/subgroup_normal_iff_kernel_of_homomorphism.html',
arbitalUrl: 'https://arbital.com/p/subgroup_normal_iff_kernel_of_homomorphism',
rawJsonUrl: '../raw/4h7.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
edit: '3',
editSummary: '',
prevEdit: '2',
currentEdit: '3',
wasPublished: 'true',
type: 'wiki',
title: 'Subgroup is normal if and only if it is the kernel of a homomorphism',
clickbait: 'The "correct way" to think about normal subgroups is as kernels of homomorphisms.',
textLength: '1446',
alias: 'subgroup_normal_iff_kernel_of_homomorphism',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-17 10:33:06',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-17 10:26:06',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '39',
text: 'Let $N$ be a [-subgroup] of [-3gd] $G$.\nThen $N$ is [4h6 normal] in $G$ if and only if there is a group $H$ and a [-47t] $\\phi:G \\to H$ such that the [49y kernel] of $\\phi$ is $N$.\n\n# Proof\n\n## "Normal" implies "is a kernel"\nLet $N$ be normal, so it is closed under [4gk conjugation].\nThen we may define the [-quotient_group] $G/N$, whose elements are the [group_coset left cosets] of $N$ in $G$, and where the operation is that $gN + hN = (g+h)N$.\nThis group is well-defined ([quotient_by_subgroup_is_well_defined_iff_normal proof]).\n\nNow there is a homomorphism $\\phi: G \\to G/N$ given by $g \\mapsto gN$.\nThis is indeed a homomorphism, by definition of the group operation $gN + hN = (g+h)N$.\n\nThe kernel of this homomorphism is precisely $\\{ g : gN = N \\}$; that is simply $N$:\n\n- Certainly $N \\subseteq \\{ g : gN = N \\}$ (because $nN = N$ for all $n$, since $N$ is closed as a subgroup of $G$);\n- We have $\\{ g : gN = N \\} \\subseteq N$ because if $gN = N$ then in particular $g e \\in N$ (where $e$ is the group identity) so $g \\in N$.\n\n## "Is a kernel" implies "normal"\nLet $\\phi: G \\to H$ have kernel $N$, so $\\phi(n) = e$ if and only if $n \\in N$.\nWe claim that $N$ is closed under conjugation by members of $G$.\n\nIndeed, $\\phi(h n h^{-1}) = \\phi(h) \\phi(n) \\phi(h^{-1}) = \\phi(h) \\phi(h^{-1})$ since $\\phi(n) = e$.\nBut that is $\\phi(h h^{-1}) = \\phi(e)$, so $hnh^{-1} \\in N$.\n\nThat is, if $n \\in N$ then $hnh^{-1} \\in N$, so $N$ is normal.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'normal_subgroup'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '4109',
parentId: 'normal_subgroup',
childId: 'subgroup_normal_iff_kernel_of_homomorphism',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
},
{
id: '4110',
parentId: 'kernel_of_group_homomorphism',
childId: 'subgroup_normal_iff_kernel_of_homomorphism',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13476',
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-17 10:33:06',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13475',
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-17 10:29:04',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13473',
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 10:28:02',
auxPageId: 'kernel_of_group_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13471',
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 10:27:59',
auxPageId: 'normal_subgroup',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13468',
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-17 10:27:44',
auxPageId: 'normal_subgroup',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13459',
pageId: 'subgroup_normal_iff_kernel_of_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-17 10:26:06',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}