{
localUrl: '../page/transcendental_number.html',
arbitalUrl: 'https://arbital.com/p/transcendental_number',
rawJsonUrl: '../raw/5wx.json',
likeableId: '3405',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'PatrickStaples'
],
pageId: 'transcendental_number',
edit: '4',
editSummary: '',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Transcendental number',
clickbait: 'A transcendental number is one which is not the root of any integer-coefficient polynomial.',
textLength: '2649',
alias: 'transcendental_number',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-08-20 21:59:36',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-08-17 17:58:55',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '2',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '48',
text: '[summary(Technical): A [4bc real] or [4zw complex] number $z$ is said to be *transcendental* if there is no (nonzero) [-48l]-coefficient [-polynomial] which has $z$ as a [root_of_polynomial root].]\n\n[summary: A *transcendental* number $z$ is one such that there is no (nonzero) [-polynomial] function which outputs $0$ when given $z$ as input. $\\frac{1}{2}$, $\\sqrt{6}$, $i$ and $e^{i \\pi/2}$ are not transcendental; $\\pi$ and $e$ are both transcendental.]\n\nA [4bc real] or [4zw complex] number is said to be *transcendental* if it is not the root of any (nonzero) [-48l]-coefficient [-polynomial].\n("Transcendental" means "not [algebraic_number algebraic]".)\n\n# Examples and non-examples\n\nMany of the most interesting numbers are *not* transcendental.\n\n- Every integer is *not* transcendental (i.e. is algebraic): the integer $n$ is the root of the integer-coefficient polynomial $x-n$.\n- Every [4zq rational] is algebraic: the rational $\\frac{p}{q}$ is the root of the integer-coefficient polynomial $qx - p$.\n- $\\sqrt{2}$ is algebraic: it is a root of $x^2-2$.\n- $i$ is algebraic: it is a root of $x^2+1$.\n- $e^{i \\pi/2}$ (or $\\frac{\\sqrt{2}}{2} + \\frac{\\sqrt{2}}{2}i$) is algebraic: it is a root of $x^4+1$.\n\nHowever, $\\pi$ and $e$ are both transcendental. (Both of these are difficult to prove.)\n\n# Proof that there is a transcendental number\n\nThere is a very sneaky proof that there is some transcendental real number, though this proof doesn't give us an example.\nIn fact, the proof will tell us that "[almost_every almost all]" real numbers are transcendental.\n(The same proof can be used to demonstrate the existence of [54z irrational numbers].)\n\nIt is a fairly easy fact that the *non*-transcendental numbers (that is, the algebraic numbers) form a [-countable] subset of the real numbers.\nIndeed, the [fundamental_theorem_of_algebra Fundamental Theorem of Algebra] states that every polynomial of degree $n$ has exactly $n$ complex roots (if we count them with [multiplicity multiplicity], so that $x^2+2x+1$ has the "two" roots $x=-1$ and $x=-1$).\nThere are only countably many integer-coefficient polynomials [todo: spell out why], and each has only finitely many complex roots (and therefore only finitely many—possibly $0$—*real* roots), so there can only be countably many numbers which are roots of *any* integer-coefficient polynomial.\n\nBut there are uncountably many reals ([reals_are_uncountable proof]), so there must be some real (indeed, uncountably many!) which is not algebraic.\nThat is, there are uncountably many transcendental numbers.\n\n# Explicit construction of a transcendental number\n[todo: Liouville's constant]',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'ChrisBarnett',
'JoeZeng'
],
childIds: [],
parentIds: [
'number'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19052',
pageId: 'transcendental_number',
userId: 'PatrickStevens',
edit: '4',
type: 'newEdit',
createdAt: '2016-08-20 21:59:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19043',
pageId: 'transcendental_number',
userId: 'JoeZeng',
edit: '3',
type: 'newEdit',
createdAt: '2016-08-20 18:38:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3407',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [],
id: '18820',
pageId: 'transcendental_number',
userId: 'ChrisBarnett',
edit: '2',
type: 'newEdit',
createdAt: '2016-08-18 17:26:12',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18793',
pageId: 'transcendental_number',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-08-17 22:00:25',
auxPageId: 'number',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18791',
pageId: 'transcendental_number',
userId: 'EricBruylant',
edit: '0',
type: 'deleteParent',
createdAt: '2016-08-17 22:00:05',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18784',
pageId: 'transcendental_number',
userId: 'PatrickStevens',
edit: '0',
type: 'newParent',
createdAt: '2016-08-17 17:58:57',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18782',
pageId: 'transcendental_number',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-08-17 17:58:55',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}