{
localUrl: '../page/well_ordered_set.html',
arbitalUrl: 'https://arbital.com/p/well_ordered_set',
rawJsonUrl: '../raw/55r.json',
likeableId: '3098',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'KevinClancy'
],
pageId: 'well_ordered_set',
edit: '6',
editSummary: '',
prevEdit: '5',
currentEdit: '6',
wasPublished: 'true',
type: 'wiki',
title: 'Well-ordered set',
clickbait: 'An ordered set with an order that always has a "next element".',
textLength: '1419',
alias: 'well_ordered_set',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'DylanHendrickson',
editCreatedAt: '2016-07-07 17:09:09',
pageCreatorId: 'DylanHendrickson',
pageCreatedAt: '2016-07-06 20:23:49',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '67',
text: 'A **well-ordered set** is a [-540] $(S, \\leq)$, such that for any nonempty subset $U \\subset S$ there is some $x \\in U$ such that for every $y \\in U$, $x \\leq y$; that is, every nonempty subset of $S$ has a least element.\n\nAny finite totally ordered set is well-ordered. The simplest [infinity infinite] well-ordered set is [45h $\\mathbb N$], also called [ordinal_omega $\\omega$] in this context.\n\nEvery well-ordered set is [4f4 isomorphic] to a unique [-ordinal_number], and thus any two well-ordered sets are comparable.\n\nThe order $\\leq$ is called a "well-ordering," despite the fact that "well" is usually an adverb.\n\n#Induction on a well-ordered set\n\n[mathematical_induction] works on any well-ordered set. On well-ordered sets longer than $\\mathbb N$, this is called [-transfinite_induction]. \n\nInduction is a method of proving a statement $P(x)$ for all elements $x$ of a well-ordered set $S$. Instead of directly proving $P(x)$, you prove that if $P(y)$ holds for all $y < x$, then $P(x)$ is true. This suffices to prove $P(x)$ for all $x \\in S$.\n\n%%hidden(Show proof):\nLet $U = \\{x \\in S \\mid \\neg P(x) \\}$ be the set of elements of $S$ for which $P$ doesn't hold, and suppose $U$ is nonempty. Since $S$ is well-ordered, $U$ has a least element $x$. That means $P(y)$ is true for all $y < x$, which implies $P(x)$. So $x \\not\\in U$, which is a contradiction. Hence $U$ is empty, and $P$ holds on all of $S$.\n%%',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '0',
maintainerCount: '0',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'DylanHendrickson',
'JoeZeng'
],
childIds: [],
parentIds: [
'totally_ordered_set'
],
commentIds: [
'564'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16000',
pageId: 'well_ordered_set',
userId: 'DylanHendrickson',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-07 17:09:09',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15970',
pageId: 'well_ordered_set',
userId: 'DylanHendrickson',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-07 14:08:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15853',
pageId: 'well_ordered_set',
userId: 'JoeZeng',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-06 23:16:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15846',
pageId: 'well_ordered_set',
userId: 'JoeZeng',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-06 23:04:09',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15771',
pageId: 'well_ordered_set',
userId: 'DylanHendrickson',
edit: '0',
type: 'newAlias',
createdAt: '2016-07-06 20:24:19',
auxPageId: '',
oldSettingsValue: '55r',
newSettingsValue: 'well_ordered_set'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15770',
pageId: 'well_ordered_set',
userId: 'DylanHendrickson',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 20:23:51',
auxPageId: 'totally_ordered_set',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15768',
pageId: 'well_ordered_set',
userId: 'DylanHendrickson',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-06 20:23:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}